diff options
author | Wim Taymans <wim.taymans@gmail.com> | 2006-07-13 15:07:28 +0000 |
---|---|---|
committer | Wim Taymans <wim.taymans@gmail.com> | 2006-07-13 15:07:28 +0000 |
commit | aae22fa1c92df5ee70fa478f831c64287344879c (patch) | |
tree | 82d1b83aff375d2ab6b0d09427560550c1b7db1e /gst/nsf/fmopl.c | |
parent | 9d2c04267dec2eda43a150b2541d5c5a0f9eaf18 (diff) | |
download | gst-plugins-bad-aae22fa1c92df5ee70fa478f831c64287344879c.tar.gz gst-plugins-bad-aae22fa1c92df5ee70fa478f831c64287344879c.tar.bz2 gst-plugins-bad-aae22fa1c92df5ee70fa478f831c64287344879c.zip |
Added NSF decoder plugin. Fixes 151192.
Original commit message from CVS:
Based on patches by: Johan Dahlin <johan at gnome dot org>
Ronald Bultje <rbultje at ronald dot bitfreak dot net>
* configure.ac:
* gst/nsf/Makefile.am:
* gst/nsf/dis6502.h:
* gst/nsf/fds_snd.c:
* gst/nsf/fds_snd.h:
* gst/nsf/fmopl.c:
* gst/nsf/fmopl.h:
* gst/nsf/gstnsf.c:
* gst/nsf/gstnsf.h:
* gst/nsf/log.c:
* gst/nsf/log.h:
* gst/nsf/memguard.c:
* gst/nsf/memguard.h:
* gst/nsf/mmc5_snd.c:
* gst/nsf/mmc5_snd.h:
* gst/nsf/nes6502.c:
* gst/nsf/nes6502.h:
* gst/nsf/nes_apu.c:
* gst/nsf/nes_apu.h:
* gst/nsf/nsf.c:
* gst/nsf/nsf.h:
* gst/nsf/osd.h:
* gst/nsf/types.h:
* gst/nsf/vrc7_snd.c:
* gst/nsf/vrc7_snd.h:
* gst/nsf/vrcvisnd.c:
* gst/nsf/vrcvisnd.h:
Added NSF decoder plugin. Fixes 151192.
Diffstat (limited to 'gst/nsf/fmopl.c')
-rw-r--r-- | gst/nsf/fmopl.c | 1392 |
1 files changed, 1392 insertions, 0 deletions
diff --git a/gst/nsf/fmopl.c b/gst/nsf/fmopl.c new file mode 100644 index 00000000..c1e321f3 --- /dev/null +++ b/gst/nsf/fmopl.c @@ -0,0 +1,1392 @@ +/* +** +** File: fmopl.c -- software implementation of FM sound generator +** +** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development +** +** Version 0.36f +** +*/ + +/* + preliminary : + Problem : + note: +*/ + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <stdarg.h> +#include <math.h> + /* #include "driver.h" *//* use M.A.M.E. */ +#include "fmopl.h" + +/* MPC - hacks */ +#include "types.h" +#include "log.h" + +#ifndef PI +#define PI 3.14159265358979323846 +#endif + +/* -------------------- preliminary define section --------------------- */ +/* attack/decay rate time rate */ +#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ +#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ + +#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ + +#define FREQ_BITS 24 /* frequency turn */ + +/* counter bits = 20 , octerve 7 */ +#define FREQ_RATE (1<<(FREQ_BITS-20)) +#define TL_BITS (FREQ_BITS+2) + +/* final output shift , limit minimum and maximum */ +#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ +#define OPL_MAXOUT (0x7fff<<OPL_OUTSB) +#define OPL_MINOUT (-0x8000<<OPL_OUTSB) + +/* -------------------- quality selection --------------------- */ + +/* sinwave entries */ +/* used static memory = SIN_ENT * 4 (byte) */ +#define SIN_ENT 2048 + +/* output level entries (envelope,sinwave) */ +/* envelope counter lower bits */ +#define ENV_BITS 16 +/* envelope output entries */ +#define EG_ENT 4096 +/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ +/* used static memory = EG_ENT*4 (byte) */ + +#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ +#define EG_DED EG_OFF +#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ +#define EG_AED EG_DST +#define EG_AST 0 /* ATTACK START */ + +#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ + +/* LFO table entries */ +#define VIB_ENT 512 +#define VIB_SHIFT (32-9) +#define AMS_ENT 512 +#define AMS_SHIFT (32-9) + +#define VIB_RATE 256 + +/* -------------------- local defines , macros --------------------- */ + +/* register number to channel number , slot offset */ +#define SLOT1 0 +#define SLOT2 1 + +/* envelope phase */ +#define ENV_MOD_RR 0x00 +#define ENV_MOD_DR 0x01 +#define ENV_MOD_AR 0x02 + +/* -------------------- tables --------------------- */ +static const int slot_array[32] = { + 0, 2, 4, 1, 3, 5, -1, -1, + 6, 8, 10, 7, 9, 11, -1, -1, + 12, 14, 16, 13, 15, 17, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1 +}; + +/* key scale level */ +#define ML(x) ((UINT32)((x)*0.1875*2/EG_STEP)) +static const UINT32 KSL_TABLE[8 * 16] = { + /* OCT 0 */ + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + /* OCT 1 */ + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + ML (0.000), ML (0.750), ML (1.125), ML (1.500), + ML (1.875), ML (2.250), ML (2.625), ML (3.000), + /* OCT 2 */ + ML (0.000), ML (0.000), ML (0.000), ML (0.000), + ML (0.000), ML (1.125), ML (1.875), ML (2.625), + ML (3.000), ML (3.750), ML (4.125), ML (4.500), + ML (4.875), ML (5.250), ML (5.625), ML (6.000), + /* OCT 3 */ + ML (0.000), ML (0.000), ML (0.000), ML (1.875), + ML (3.000), ML (4.125), ML (4.875), ML (5.625), + ML (6.000), ML (6.750), ML (7.125), ML (7.500), + ML (7.875), ML (8.250), ML (8.625), ML (9.000), + /* OCT 4 */ + ML (0.000), ML (0.000), ML (3.000), ML (4.875), + ML (6.000), ML (7.125), ML (7.875), ML (8.625), + ML (9.000), ML (9.750), ML (10.125), ML (10.500), + ML (10.875), ML (11.250), ML (11.625), ML (12.000), + /* OCT 5 */ + ML (0.000), ML (3.000), ML (6.000), ML (7.875), + ML (9.000), ML (10.125), ML (10.875), ML (11.625), + ML (12.000), ML (12.750), ML (13.125), ML (13.500), + ML (13.875), ML (14.250), ML (14.625), ML (15.000), + /* OCT 6 */ + ML (0.000), ML (6.000), ML (9.000), ML (10.875), + ML (12.000), ML (13.125), ML (13.875), ML (14.625), + ML (15.000), ML (15.750), ML (16.125), ML (16.500), + ML (16.875), ML (17.250), ML (17.625), ML (18.000), + /* OCT 7 */ + ML (0.000), ML (9.000), ML (12.000), ML (13.875), + ML (15.000), ML (16.125), ML (16.875), ML (17.625), + ML (18.000), ML (18.750), ML (19.125), ML (19.500), + ML (19.875), ML (20.250), ML (20.625), ML (21.000) +}; + +#undef ML + +/* sustain lebel table (3db per step) */ +/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ +#define SC(db) ((INT32) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST) +static const INT32 SL_TABLE[16] = { + SC (0), SC (1), SC (2), SC (3), SC (4), SC (5), SC (6), SC (7), + SC (8), SC (9), SC (10), SC (11), SC (12), SC (13), SC (14), SC (31) +}; + +#undef SC + +#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ +/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ +/* TL.TABLE[ 0 to TL_MAX ] : plus section */ +/* TL.TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ +static union +{ + INT32 *TABLE; + void *TABLE_PTR; +} TL; + +/* pointers to TL.TABLE with sinwave output offset */ +static union +{ + INT32 **TABLE; + void *TABLE_PTR; +} SIN; + +/* LFO table */ +static union +{ + INT32 *TABLE; + void *TABLE_PTR; +} AMS; + +static union +{ + INT32 *TABLE; + void *TABLE_PTR; +} VIB; + +/* envelope output curve table */ +/* attack + decay + OFF */ +static INT32 ENV_CURVE[2 * EG_ENT + 1]; + +/* multiple table */ +#define ML(x) ((UINT32) (2*(x))) +static const UINT32 MUL_TABLE[16] = { +/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ + ML (0.50), ML (1.00), ML (2.00), ML (3.00), ML (4.00), ML (5.00), ML (6.00), + ML (7.00), + ML (8.00), ML (9.00), ML (10.00), ML (10.00), ML (12.00), ML (12.00), + ML (15.00), ML (15.00) +}; + +#undef ML + +/* dummy attack / decay rate ( when rate == 0 ) */ +static INT32 RATE_0[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + +/* -------------------- static state --------------------- */ + +/* lock level of common table */ +static int num_lock = 0; + +/* work table */ +static void *cur_chip = NULL; /* current chip point */ + +/* currenct chip state */ +/* static FMSAMPLE *bufL,*bufR; */ +static OPL_CH *S_CH; +static OPL_CH *E_CH; +OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; + +static INT32 outd[1]; +static INT32 ams; +static INT32 vib; +INT32 *ams_table; +INT32 *vib_table; +static INT32 amsIncr; +static INT32 vibIncr; +static INT32 feedback2; /* connect for SLOT 2 */ + +/* log output level */ +#define LOG_ERR 3 /* ERROR */ +#define LOG_WAR 2 /* WARNING */ +#define LOG_INF 1 /* INFORMATION */ + +#define LOG_LEVEL LOG_INF + +/* #define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x */ +#define LOG(n,x) if( (n)>=LOG_LEVEL ) log_printf x + +/* --------------------- subroutines --------------------- */ + +INLINE int +Limit (int val, int max, int min) +{ + if (val > max) + val = max; + else if (val < min) + val = min; + + return val; +} + +/* status set and IRQ handling */ +INLINE void +OPL_STATUS_SET (FM_OPL * OPL, int flag) +{ + /* set status flag */ + OPL->status |= flag; + if (!(OPL->status & 0x80)) { + if (OPL->status & OPL->statusmask) { /* IRQ on */ + OPL->status |= 0x80; + /* callback user interrupt handler (IRQ is OFF to ON) */ + if (OPL->IRQHandler) + (OPL->IRQHandler) (OPL->IRQParam, 1); + } + } +} + +/* status reset and IRQ handling */ +INLINE void +OPL_STATUS_RESET (FM_OPL * OPL, int flag) +{ + /* reset status flag */ + OPL->status &= ~flag; + if ((OPL->status & 0x80)) { + if (!(OPL->status & OPL->statusmask)) { + OPL->status &= 0x7f; + /* callback user interrupt handler (IRQ is ON to OFF) */ + if (OPL->IRQHandler) + (OPL->IRQHandler) (OPL->IRQParam, 0); + } + } +} + +/* IRQ mask set */ +INLINE void +OPL_STATUSMASK_SET (FM_OPL * OPL, int flag) +{ + OPL->statusmask = flag; + /* IRQ handling check */ + OPL_STATUS_SET (OPL, 0); + OPL_STATUS_RESET (OPL, 0); +} + +/* ----- key on ----- */ +INLINE void +OPL_KEYON (OPL_SLOT * SLOT) +{ + /* sin wave restart */ + SLOT->Cnt = 0; + /* set attack */ + SLOT->evm = ENV_MOD_AR; + SLOT->evs = SLOT->evsa; + SLOT->evc = EG_AST; + SLOT->eve = EG_AED; +} + +/* ----- key off ----- */ +INLINE void +OPL_KEYOFF (OPL_SLOT * SLOT) +{ + if (SLOT->evm > ENV_MOD_RR) { + /* set envelope counter from envleope output */ + SLOT->evm = ENV_MOD_RR; + if (!(SLOT->evc & EG_DST)) + /* SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; */ + SLOT->evc = EG_DST; + SLOT->eve = EG_DED; + SLOT->evs = SLOT->evsr; + } +} + +/* ---------- calcrate Envelope Generator & Phase Generator ---------- */ +/* return : envelope output */ +INLINE UINT32 +OPL_CALC_SLOT (OPL_SLOT * SLOT) +{ + /* calcrate envelope generator */ + if ((SLOT->evc += SLOT->evs) >= SLOT->eve) { + switch (SLOT->evm) { + case ENV_MOD_AR: /* ATTACK -> DECAY1 */ + /* next DR */ + SLOT->evm = ENV_MOD_DR; + SLOT->evc = EG_DST; + SLOT->eve = SLOT->SL; + SLOT->evs = SLOT->evsd; + break; + case ENV_MOD_DR: /* DECAY -> SL or RR */ + SLOT->evc = SLOT->SL; + SLOT->eve = EG_DED; + if (SLOT->eg_typ) { + SLOT->evs = 0; + } else { + SLOT->evm = ENV_MOD_RR; + SLOT->evs = SLOT->evsr; + } + break; + case ENV_MOD_RR: /* RR -> OFF */ + SLOT->evc = EG_OFF; + SLOT->eve = EG_OFF + 1; + SLOT->evs = 0; + break; + } + } + /* calcrate envelope */ + return SLOT->TLL + ENV_CURVE[SLOT->evc >> ENV_BITS] + (SLOT->ams ? ams : 0); +} + +/* set algorythm connection */ +static void +set_algorythm (OPL_CH * CH) +{ + INT32 *carrier = &outd[0]; + + CH->connect1 = CH->CON ? carrier : &feedback2; + CH->connect2 = carrier; +} + +/* ---------- frequency counter for operater update ---------- */ +INLINE void +CALC_FCSLOT (OPL_CH * CH, OPL_SLOT * SLOT) +{ + int ksr; + + /* frequency step counter */ + SLOT->Incr = CH->fc * SLOT->mul; + ksr = CH->kcode >> SLOT->KSR; + + if (SLOT->ksr != ksr) { + SLOT->ksr = ksr; + /* attack , decay rate recalcration */ + SLOT->evsa = SLOT->AR[ksr]; + SLOT->evsd = SLOT->DR[ksr]; + SLOT->evsr = SLOT->RR[ksr]; + } + SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); +} + +/* set multi,am,vib,EG-TYP,KSR,mul */ +INLINE void +set_mul (FM_OPL * OPL, int slot, int v) +{ + OPL_CH *CH = &OPL->P_CH[slot / 2]; + OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; + + SLOT->mul = MUL_TABLE[v & 0x0f]; + SLOT->KSR = (v & 0x10) ? 0 : 2; + SLOT->eg_typ = (v & 0x20) >> 5; + SLOT->vib = (v & 0x40); + SLOT->ams = (v & 0x80); + CALC_FCSLOT (CH, SLOT); +} + +/* set ksl & tl */ +INLINE void +set_ksl_tl (FM_OPL * OPL, int slot, int v) +{ + OPL_CH *CH = &OPL->P_CH[slot / 2]; + OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; + int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */ + + SLOT->ksl = ksl ? 3 - ksl : 31; + SLOT->TL = (INT32) (((v & 0x3f) * (0.75 / EG_STEP))); /* 0.75db step */ + + if (!(OPL->mode & 0x80)) { /* not CSM latch total level */ + SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); + } +} + +/* set attack rate & decay rate */ +INLINE void +set_ar_dr (FM_OPL * OPL, int slot, int v) +{ + OPL_CH *CH = &OPL->P_CH[slot / 2]; + OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; + int ar = v >> 4; + int dr = v & 0x0f; + + SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0; + SLOT->evsa = SLOT->AR[SLOT->ksr]; + if (SLOT->evm == ENV_MOD_AR) + SLOT->evs = SLOT->evsa; + + SLOT->DR = dr ? &OPL->DR_TABLE[dr << 2] : RATE_0; + SLOT->evsd = SLOT->DR[SLOT->ksr]; + if (SLOT->evm == ENV_MOD_DR) + SLOT->evs = SLOT->evsd; +} + +/* set sustain level & release rate */ +INLINE void +set_sl_rr (FM_OPL * OPL, int slot, int v) +{ + OPL_CH *CH = &OPL->P_CH[slot / 2]; + OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; + int sl = v >> 4; + int rr = v & 0x0f; + + SLOT->SL = SL_TABLE[sl]; + if (SLOT->evm == ENV_MOD_DR) + SLOT->eve = SLOT->SL; + SLOT->RR = &OPL->DR_TABLE[rr << 2]; + SLOT->evsr = SLOT->RR[SLOT->ksr]; + if (SLOT->evm == ENV_MOD_RR) + SLOT->evs = SLOT->evsr; +} + +/* operator output calcrator */ +#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] +/* ---------- calcrate one of channel ---------- */ +INLINE void +OPL_CALC_CH (OPL_CH * CH) +{ + UINT32 env_out; + OPL_SLOT *SLOT; + + feedback2 = 0; + /* SLOT 1 */ + SLOT = &CH->SLOT[SLOT1]; + env_out = OPL_CALC_SLOT (SLOT); + if (env_out < EG_ENT - 1) { + /* PG */ + if (SLOT->vib) + SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); + else + SLOT->Cnt += SLOT->Incr; + /* connectoion */ + if (CH->FB) { + int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB; + + CH->op1_out[1] = CH->op1_out[0]; + *CH->connect1 += CH->op1_out[0] = OP_OUT (SLOT, env_out, feedback1); + } else { + *CH->connect1 += OP_OUT (SLOT, env_out, 0); + } + } else { + CH->op1_out[1] = CH->op1_out[0]; + CH->op1_out[0] = 0; + } + /* SLOT 2 */ + SLOT = &CH->SLOT[SLOT2]; + env_out = OPL_CALC_SLOT (SLOT); + if (env_out < EG_ENT - 1) { + /* PG */ + if (SLOT->vib) + SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); + else + SLOT->Cnt += SLOT->Incr; + /* connectoion */ + outd[0] += OP_OUT (SLOT, env_out, feedback2); + } +} + +/* ---------- calcrate rythm block ---------- */ +#define WHITE_NOISE_db 6.0 +INLINE void +OPL_CALC_RH (OPL_CH * CH) +{ + UINT32 env_tam, env_sd, env_top, env_hh; + int whitenoise = (rand () & 1) * ((int) (WHITE_NOISE_db / EG_STEP)); + INT32 tone8; + + OPL_SLOT *SLOT; + int env_out; + + /* BD : same as FM serial mode and output level is large */ + feedback2 = 0; + /* SLOT 1 */ + SLOT = &CH[6].SLOT[SLOT1]; + env_out = OPL_CALC_SLOT (SLOT); + if (env_out < EG_ENT - 1) { + /* PG */ + if (SLOT->vib) + SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); + else + SLOT->Cnt += SLOT->Incr; + /* connectoion */ + if (CH[6].FB) { + int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB; + + CH[6].op1_out[1] = CH[6].op1_out[0]; + feedback2 = CH[6].op1_out[0] = OP_OUT (SLOT, env_out, feedback1); + } else { + feedback2 = OP_OUT (SLOT, env_out, 0); + } + } else { + feedback2 = 0; + CH[6].op1_out[1] = CH[6].op1_out[0]; + CH[6].op1_out[0] = 0; + } + /* SLOT 2 */ + SLOT = &CH[6].SLOT[SLOT2]; + env_out = OPL_CALC_SLOT (SLOT); + if (env_out < EG_ENT - 1) { + /* PG */ + if (SLOT->vib) + SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); + else + SLOT->Cnt += SLOT->Incr; + /* connectoion */ + outd[0] += OP_OUT (SLOT, env_out, feedback2) * 2; + } + + /* SD (17) = mul14[fnum7] + white noise + * TAM (15) = mul15[fnum8] + * TOP (18) = fnum6(mul18[fnum8]+whitenoise) + * HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise + */ + env_sd = OPL_CALC_SLOT (SLOT7_2) + whitenoise; + env_tam = OPL_CALC_SLOT (SLOT8_1); + env_top = OPL_CALC_SLOT (SLOT8_2); + env_hh = OPL_CALC_SLOT (SLOT7_1) + whitenoise; + + /* PG */ + if (SLOT7_1->vib) + SLOT7_1->Cnt += (2 * SLOT7_1->Incr * vib / VIB_RATE); + else + SLOT7_1->Cnt += 2 * SLOT7_1->Incr; + if (SLOT7_2->vib) + SLOT7_2->Cnt += ((CH[7].fc * 8) * vib / VIB_RATE); + else + SLOT7_2->Cnt += (CH[7].fc * 8); + if (SLOT8_1->vib) + SLOT8_1->Cnt += (SLOT8_1->Incr * vib / VIB_RATE); + else + SLOT8_1->Cnt += SLOT8_1->Incr; + if (SLOT8_2->vib) + SLOT8_2->Cnt += ((CH[8].fc * 48) * vib / VIB_RATE); + else + SLOT8_2->Cnt += (CH[8].fc * 48); + + tone8 = OP_OUT (SLOT8_2, whitenoise, 0); + + /* SD */ + if (env_sd < EG_ENT - 1) + outd[0] += OP_OUT (SLOT7_1, env_sd, 0) * 8; + /* TAM */ + if (env_tam < EG_ENT - 1) + outd[0] += OP_OUT (SLOT8_1, env_tam, 0) * 2; + /* TOP-CY */ + if (env_top < EG_ENT - 1) + outd[0] += OP_OUT (SLOT7_2, env_top, tone8) * 2; + /* HH */ + if (env_hh < EG_ENT - 1) + outd[0] += OP_OUT (SLOT7_2, env_hh, tone8) * 2; +} + +/* ----------- initialize time tabls ----------- */ +static void +init_timetables (FM_OPL * OPL, int ARRATE, int DRRATE) +{ + int i; + double rate; + + /* make attack rate & decay rate tables */ + for (i = 0; i < 4; i++) + OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; + for (i = 4; i <= 60; i++) { + rate = OPL->freqbase; /* frequency rate */ + if (i < 60) + rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ + rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */ + rate *= (double) (EG_ENT << ENV_BITS); + OPL->AR_TABLE[i] = (INT32) (rate / ARRATE); + OPL->DR_TABLE[i] = (INT32) (rate / DRRATE); + } + for (i = 60; i < 76; i++) { + OPL->AR_TABLE[i] = EG_AED - 1; + OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; + } +#if 0 + for (i = 0; i < 64; i++) { /* make for overflow area */ + LOG (LOG_WAR, ("rate %2d , ar %f ms , dr %f ms \n", i, + ((double) (EG_ENT << ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / + OPL->rate), + ((double) (EG_ENT << ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / + OPL->rate))); + } +#endif +} + +/* ---------- generic table initialize ---------- */ +static int +OPLOpenTable (void) +{ + int s, t; + double rate; + int i, j; + double pom; + + /* allocate dynamic tables */ + if ((TL.TABLE = malloc (TL_MAX * 2 * sizeof (INT32))) == NULL) + return 0; + if ((SIN.TABLE = malloc (SIN_ENT * 4 * sizeof (INT32 *))) == NULL) { + free (TL.TABLE_PTR); + return 0; + } + if ((AMS.TABLE = malloc (AMS_ENT * 2 * sizeof (INT32))) == NULL) { + free (TL.TABLE_PTR); + free (SIN.TABLE_PTR); + return 0; + } + if ((VIB.TABLE = malloc (VIB_ENT * 2 * sizeof (INT32))) == NULL) { + free (TL.TABLE_PTR); + free (SIN.TABLE_PTR); + free (AMS.TABLE_PTR); + return 0; + } + /* make total level table */ + for (t = 0; t < EG_ENT - 1; t++) { + rate = ((1 << TL_BITS) - 1) / pow (10, EG_STEP * t / 20); /* dB -> voltage */ + TL.TABLE[t] = (int) rate; + TL.TABLE[TL_MAX + t] = -TL.TABLE[t]; +/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL.TABLE[t]));*/ + } + /* fill volume off area */ + for (t = EG_ENT - 1; t < TL_MAX; t++) { + TL.TABLE[t] = TL.TABLE[TL_MAX + t] = 0; + } + + /* make sinwave table (total level offet) */ + /* degree 0 = degree 180 = off */ + SIN.TABLE[0] = SIN.TABLE[SIN_ENT / 2] = &TL.TABLE[EG_ENT - 1]; + for (s = 1; s <= SIN_ENT / 4; s++) { + pom = sin (2 * PI * s / SIN_ENT); /* sin */ + pom = 20 * log10 (1 / pom); /* decibel */ + j = (int) (pom / EG_STEP); /* TL.TABLE steps */ + + /* degree 0 - 90 , degree 180 - 90 : plus section */ + SIN.TABLE[s] = SIN.TABLE[SIN_ENT / 2 - s] = &TL.TABLE[j]; + /* degree 180 - 270 , degree 360 - 270 : minus section */ + SIN.TABLE[SIN_ENT / 2 + s] = SIN.TABLE[SIN_ENT - s] = &TL.TABLE[TL_MAX + j]; +/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ + } + for (s = 0; s < SIN_ENT; s++) { + SIN.TABLE[SIN_ENT * 1 + s] = + s < (SIN_ENT / 2) ? SIN.TABLE[s] : &TL.TABLE[EG_ENT]; + SIN.TABLE[SIN_ENT * 2 + s] = SIN.TABLE[s % (SIN_ENT / 2)]; + SIN.TABLE[SIN_ENT * 3 + s] = + (s / (SIN_ENT / 4)) & 1 ? &TL.TABLE[EG_ENT] : SIN.TABLE[SIN_ENT * 2 + + s]; + } + + /* envelope counter -> envelope output table */ + for (i = 0; i < EG_ENT; i++) { + /* ATTACK curve */ + pom = pow (((double) (EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT; + /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ + ENV_CURVE[i] = (int) pom; + /* DECAY ,RELEASE curve */ + ENV_CURVE[(EG_DST >> ENV_BITS) + i] = i; + } + /* off */ + ENV_CURVE[EG_OFF >> ENV_BITS] = EG_ENT - 1; + /* make LFO ams table */ + for (i = 0; i < AMS_ENT; i++) { + pom = (1.0 + sin (2 * PI * i / AMS_ENT)) / 2; /* sin */ + AMS.TABLE[i] = (INT32) ((1.0 / EG_STEP) * pom); /* 1dB */ + AMS.TABLE[AMS_ENT + i] = (INT32) ((4.8 / EG_STEP) * pom); /* 4.8dB */ + } + /* make LFO vibrate table */ + for (i = 0; i < VIB_ENT; i++) { + /* 100cent = 1seminote = 6% ?? */ + pom = (double) VIB_RATE *0.06 * sin (2 * PI * i / VIB_ENT); /* +-100sect step */ + + VIB.TABLE[i] = VIB_RATE + (INT32) (pom * 0.07); /* +- 7cent */ + VIB.TABLE[VIB_ENT + i] = VIB_RATE + (INT32) (pom * 0.14); /* +-14cent */ + /* LOG(LOG_INF,("vib %d=%d\n",i,VIB.TABLE[VIB_ENT+i])); */ + } + return 1; +} + + +static void +OPLCloseTable (void) +{ + free (TL.TABLE_PTR); + free (SIN.TABLE_PTR); + free (AMS.TABLE_PTR); + free (VIB.TABLE_PTR); +} + +/* CSM Key Controll */ +INLINE void +CSMKeyControll (OPL_CH * CH) +{ + OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; + OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; + + /* all key off */ + OPL_KEYOFF (slot1); + OPL_KEYOFF (slot2); + /* total level latch */ + slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl); + slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl); + /* key on */ + CH->op1_out[0] = CH->op1_out[1] = 0; + OPL_KEYON (slot1); + OPL_KEYON (slot2); +} + +/* ---------- opl initialize ---------- */ +static void +OPL_initalize (FM_OPL * OPL) +{ + int fn; + + /* frequency base */ + OPL->freqbase = (OPL->rate) ? ((double) OPL->clock / OPL->rate) / 72 : 0; + /* Timer base time */ + OPL->TimerBase = 1.0 / ((double) OPL->clock / 72.0); + /* make time tables */ + init_timetables (OPL, OPL_ARRATE, OPL_DRRATE); + /* make fnumber -> increment counter table */ + for (fn = 0; fn < 1024; fn++) { + OPL->FN_TABLE[fn] = + (UINT32) (OPL->freqbase * fn * FREQ_RATE * (1 << 7) / 2); + } + /* LFO freq.table */ + OPL->amsIncr = + (INT32) (OPL->rate ? (double) AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * + 3.7 * ((double) OPL->clock / 3600000) : 0); + OPL->vibIncr = + (INT32) (OPL->rate ? (double) VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * + 6.4 * ((double) OPL->clock / 3600000) : 0); +} + +/* ---------- write a OPL registers ---------- */ +static void +OPLWriteReg (FM_OPL * OPL, int r, int v) +{ + OPL_CH *CH; + int slot; + unsigned int block_fnum; + + switch (r & 0xe0) { + case 0x00: /* 00-1f:controll */ + switch (r & 0x1f) { + case 0x01: + /* wave selector enable */ + if (OPL->type & OPL_TYPE_WAVESEL) { + OPL->wavesel = v & 0x20; + if (!OPL->wavesel) { + /* preset compatible mode */ + int c; + + for (c = 0; c < OPL->max_ch; c++) { + OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN.TABLE[0]; + OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN.TABLE[0]; + } + } + } + return; + case 0x02: /* Timer 1 */ + OPL->T[0] = (256 - v) * 4; + break; + case 0x03: /* Timer 2 */ + OPL->T[1] = (256 - v) * 16; + return; + case 0x04: /* IRQ clear / mask and Timer enable */ + if (v & 0x80) { /* IRQ flag clear */ + OPL_STATUS_RESET (OPL, 0x7f); + } else { /* set IRQ mask ,timer enable */ + UINT8 st1 = v & 1; + UINT8 st2 = (v >> 1) & 1; + + /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ + OPL_STATUS_RESET (OPL, v & 0x78); + OPL_STATUSMASK_SET (OPL, ((~v) & 0x78) | 0x01); + /* timer 2 */ + if (OPL->st[1] != st2) { + double interval = st2 ? (double) OPL->T[1] * OPL->TimerBase : 0.0; + + OPL->st[1] = st2; + if (OPL->TimerHandler) + (OPL->TimerHandler) (OPL->TimerParam + 1, interval); + } + /* timer 1 */ + if (OPL->st[0] != st1) { + double interval = st1 ? (double) OPL->T[0] * OPL->TimerBase : 0.0; + + OPL->st[0] = st1; + if (OPL->TimerHandler) + (OPL->TimerHandler) (OPL->TimerParam + 0, interval); + } + } + return; +#if BUILD_Y8950 + case 0x06: /* Key Board OUT */ + if (OPL->type & OPL_TYPE_KEYBOARD) { + if (OPL->keyboardhandler_w) + OPL->keyboardhandler_w (OPL->keyboard_param, v); + else + LOG (LOG_WAR, ("OPL:write unmapped KEYBOARD port\n")); + } + return; + case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ + if (OPL->type & OPL_TYPE_ADPCM) + YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v); + return; + case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ + OPL->mode = v; + v &= 0x1f; /* for DELTA-T unit */ + case 0x09: /* START ADD */ + case 0x0a: + case 0x0b: /* STOP ADD */ + case 0x0c: + case 0x0d: /* PRESCALE */ + case 0x0e: + case 0x0f: /* ADPCM data */ + case 0x10: /* DELTA-N */ + case 0x11: /* DELTA-N */ + case 0x12: /* EG-CTRL */ + if (OPL->type & OPL_TYPE_ADPCM) + YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v); + return; +#if 0 + case 0x15: /* DAC data */ + case 0x16: + case 0x17: /* SHIFT */ + return; + case 0x18: /* I/O CTRL (Direction) */ + if (OPL->type & OPL_TYPE_IO) + OPL->portDirection = v & 0x0f; + return; + case 0x19: /* I/O DATA */ + if (OPL->type & OPL_TYPE_IO) { + OPL->portLatch = v; + if (OPL->porthandler_w) + OPL->porthandler_w (OPL->port_param, v & OPL->portDirection); + } + return; + case 0x1a: /* PCM data */ + return; +#endif +#endif + } + break; + case 0x20: /* am,vib,ksr,eg type,mul */ + slot = slot_array[r & 0x1f]; + if (slot == -1) + return; + set_mul (OPL, slot, v); + return; + case 0x40: + slot = slot_array[r & 0x1f]; + if (slot == -1) + return; + set_ksl_tl (OPL, slot, v); + return; + case 0x60: + slot = slot_array[r & 0x1f]; + if (slot == -1) + return; + set_ar_dr (OPL, slot, v); + return; + case 0x80: + slot = slot_array[r & 0x1f]; + if (slot == -1) + return; + set_sl_rr (OPL, slot, v); + return; + case 0xa0: + switch (r) { + case 0xbd: + /* amsep,vibdep,r,bd,sd,tom,tc,hh */ + { + UINT8 rkey = OPL->rythm ^ v; + + OPL->ams_table = &AMS.TABLE[v & 0x80 ? AMS_ENT : 0]; + OPL->vib_table = &VIB.TABLE[v & 0x40 ? VIB_ENT : 0]; + OPL->rythm = v & 0x3f; + if (OPL->rythm & 0x20) { +#if 0 + usrintf_showmessage ("OPL Rythm mode select"); +#endif + /* BD key on/off */ + if (rkey & 0x10) { + if (v & 0x10) { + OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; + OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT1]); + OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT2]); + } else { + OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT1]); + OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT2]); + } + } + /* SD key on/off */ + if (rkey & 0x08) { + if (v & 0x08) + OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT2]); + else + OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT2]); + } /* TAM key on/off */ + if (rkey & 0x04) { + if (v & 0x04) + OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT1]); + else + OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT1]); + } + /* TOP-CY key on/off */ + if (rkey & 0x02) { + if (v & 0x02) + OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT2]); + else + OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT2]); + } + /* HH key on/off */ + if (rkey & 0x01) { + if (v & 0x01) + OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT1]); + else + OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT1]); + } + } + } + return; + } + /* keyon,block,fnum */ + if ((r & 0x0f) > 8) + return; + CH = &OPL->P_CH[r & 0x0f]; + if (!(r & 0x10)) { /* a0-a8 */ + block_fnum = (CH->block_fnum & 0x1f00) | v; + } else { /* b0-b8 */ + int keyon = (v >> 5) & 1; + + block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff); + if (CH->keyon != keyon) { + if ((CH->keyon = keyon)) { + CH->op1_out[0] = CH->op1_out[1] = 0; + OPL_KEYON (&CH->SLOT[SLOT1]); + OPL_KEYON (&CH->SLOT[SLOT2]); + } else { + OPL_KEYOFF (&CH->SLOT[SLOT1]); + OPL_KEYOFF (&CH->SLOT[SLOT2]); + } + } + } + /* update */ + if (CH->block_fnum != block_fnum) { + int blockRv = 7 - (block_fnum >> 10); + int fnum = block_fnum & 0x3ff; + + CH->block_fnum = block_fnum; + + CH->ksl_base = KSL_TABLE[block_fnum >> 6]; + CH->fc = OPL->FN_TABLE[fnum] >> blockRv; + CH->kcode = CH->block_fnum >> 9; + if ((OPL->mode & 0x40) && CH->block_fnum & 0x100) + CH->kcode |= 1; + CALC_FCSLOT (CH, &CH->SLOT[SLOT1]); + CALC_FCSLOT (CH, &CH->SLOT[SLOT2]); + } + return; + case 0xc0: + /* FB,C */ + if ((r & 0x0f) > 8) + return; + CH = &OPL->P_CH[r & 0x0f]; + { + int feedback = (v >> 1) & 7; + + CH->FB = feedback ? (8 + 1) - feedback : 0; + CH->CON = v & 1; + set_algorythm (CH); + } + return; + case 0xe0: /* wave type */ + slot = slot_array[r & 0x1f]; + if (slot == -1) + return; + CH = &OPL->P_CH[slot / 2]; + if (OPL->wavesel) { + /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ + CH->SLOT[slot & 1].wavetable = &SIN.TABLE[(v & 0x03) * SIN_ENT]; + } + return; + } +} + +/* lock/unlock for common table */ +static int +OPL_LockTable (void) +{ + num_lock++; + if (num_lock > 1) + return 0; + /* first time */ + cur_chip = NULL; + /* allocate total level table (128kb space) */ + if (!OPLOpenTable ()) { + num_lock--; + return -1; + } + return 0; +} + +static void +OPL_UnLockTable (void) +{ + if (num_lock) + num_lock--; + if (num_lock) + return; + /* last time */ + cur_chip = NULL; + OPLCloseTable (); +} + +#if (BUILD_YM3812 || BUILD_YM3526) +/*******************************************************************************/ +/* YM3812 local section */ +/*******************************************************************************/ + +/* ---------- update one of chip ----------- */ +void +YM3812UpdateOne (FM_OPL * OPL, INT16 * buffer, int length) +{ + int i; + int data; + FMSAMPLE *buf = buffer; + UINT32 amsCnt = OPL->amsCnt; + UINT32 vibCnt = OPL->vibCnt; + UINT8 rythm = OPL->rythm & 0x20; + OPL_CH *CH, *R_CH; + + if ((void *) OPL != cur_chip) { + cur_chip = (void *) OPL; + /* channel pointers */ + S_CH = OPL->P_CH; + E_CH = &S_CH[9]; + /* rythm slot */ + SLOT7_1 = &S_CH[7].SLOT[SLOT1]; + SLOT7_2 = &S_CH[7].SLOT[SLOT2]; + SLOT8_1 = &S_CH[8].SLOT[SLOT1]; + SLOT8_2 = &S_CH[8].SLOT[SLOT2]; + /* LFO state */ + amsIncr = OPL->amsIncr; + vibIncr = OPL->vibIncr; + ams_table = OPL->ams_table; + vib_table = OPL->vib_table; + } + R_CH = rythm ? &S_CH[6] : E_CH; + for (i = 0; i < length; i++) { + /* channel A channel B channel C */ + /* LFO */ + ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; + vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; + outd[0] = 0; + /* FM part */ + for (CH = S_CH; CH < R_CH; CH++) + OPL_CALC_CH (CH); + /* Rythn part */ + if (rythm) + OPL_CALC_RH (S_CH); + /* limit check */ + data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT); + /* store to sound buffer */ + buf[i] = data >> OPL_OUTSB; + } + + OPL->amsCnt = amsCnt; + OPL->vibCnt = vibCnt; +} +#endif /* (BUILD_YM3812 || BUILD_YM3526) */ + +#if BUILD_Y8950 + +void +Y8950UpdateOne (FM_OPL * OPL, INT16 * buffer, int length) +{ + int i; + int data; + FMSAMPLE *buf = buffer; + UINT32 amsCnt = OPL->amsCnt; + UINT32 vibCnt = OPL->vibCnt; + UINT8 rythm = OPL->rythm & 0x20; + OPL_CH *CH, *R_CH; + YM_DELTAT *DELTAT = OPL->deltat; + + /* setup DELTA-T unit */ + YM_DELTAT_DECODE_PRESET (DELTAT); + + if ((void *) OPL != cur_chip) { + cur_chip = (void *) OPL; + /* channel pointers */ + S_CH = OPL->P_CH; + E_CH = &S_CH[9]; + /* rythm slot */ + SLOT7_1 = &S_CH[7].SLOT[SLOT1]; + SLOT7_2 = &S_CH[7].SLOT[SLOT2]; + SLOT8_1 = &S_CH[8].SLOT[SLOT1]; + SLOT8_2 = &S_CH[8].SLOT[SLOT2]; + /* LFO state */ + amsIncr = OPL->amsIncr; + vibIncr = OPL->vibIncr; + ams_table = OPL->ams_table; + vib_table = OPL->vib_table; + } + R_CH = rythm ? &S_CH[6] : E_CH; + for (i = 0; i < length; i++) { + /* channel A channel B channel C */ + /* LFO */ + ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; + vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; + outd[0] = 0; + /* deltaT ADPCM */ + if (DELTAT->flag) + YM_DELTAT_ADPCM_CALC (DELTAT); + /* FM part */ + for (CH = S_CH; CH < R_CH; CH++) + OPL_CALC_CH (CH); + /* Rythn part */ + if (rythm) + OPL_CALC_RH (S_CH); + /* limit check */ + data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT); + /* store to sound buffer */ + buf[i] = data >> OPL_OUTSB; + } + OPL->amsCnt = amsCnt; + OPL->vibCnt = vibCnt; + /* deltaT START flag */ + if (!DELTAT->flag) + OPL->status &= 0xfe; +} +#endif + +/* ---------- reset one of chip ---------- */ +void +OPLResetChip (FM_OPL * OPL) +{ + int c, s; + int i; + + /* reset chip */ + OPL->mode = 0; /* normal mode */ + OPL_STATUS_RESET (OPL, 0x7f); + /* reset with register write */ + OPLWriteReg (OPL, 0x01, 0); /* wabesel disable */ + OPLWriteReg (OPL, 0x02, 0); /* Timer1 */ + OPLWriteReg (OPL, 0x03, 0); /* Timer2 */ + OPLWriteReg (OPL, 0x04, 0); /* IRQ mask clear */ + for (i = 0xff; i >= 0x20; i--) + OPLWriteReg (OPL, i, 0); + /* reset OPerator paramater */ + for (c = 0; c < OPL->max_ch; c++) { + OPL_CH *CH = &OPL->P_CH[c]; + + /* OPL->P_CH[c].PAN = OPN_CENTER; */ + for (s = 0; s < 2; s++) { + /* wave table */ + CH->SLOT[s].wavetable = &SIN.TABLE[0]; + /* CH->SLOT[s].evm = ENV_MOD_RR; */ + CH->SLOT[s].evc = EG_OFF; + CH->SLOT[s].eve = EG_OFF + 1; + CH->SLOT[s].evs = 0; + } + } +#if BUILD_Y8950 + if (OPL->type & OPL_TYPE_ADPCM) { + YM_DELTAT *DELTAT = OPL->deltat; + + DELTAT->freqbase = OPL->freqbase; + DELTAT->output_pointer = outd; + DELTAT->portshift = 5; + DELTAT->output_range = DELTAT_MIXING_LEVEL << TL_BITS; + YM_DELTAT_ADPCM_Reset (DELTAT, 0); + } +#endif +} + +/* ---------- Create one of vietual YM3812 ---------- */ +/* 'rate' is sampling rate and 'bufsiz' is the size of the */ +FM_OPL * +OPLCreate (int type, int clock, int rate) +{ + char *ptr; + FM_OPL *OPL; + int state_size; + int max_ch = 9; /* normaly 9 channels */ + + if (OPL_LockTable () == -1) + return NULL; + /* allocate OPL state space */ + state_size = sizeof (FM_OPL); + state_size += sizeof (OPL_CH) * max_ch; +#if BUILD_Y8950 + if (type & OPL_TYPE_ADPCM) + state_size += sizeof (YM_DELTAT); +#endif + /* allocate memory block */ + ptr = malloc (state_size); + if (ptr == NULL) + return NULL; + /* clear */ + memset (ptr, 0, state_size); + OPL = (FM_OPL *) ptr; + ptr += sizeof (FM_OPL); + OPL->P_CH = (OPL_CH *) ptr; + ptr += sizeof (OPL_CH) * max_ch; +#if BUILD_Y8950 + if (type & OPL_TYPE_ADPCM) + OPL->deltat = (YM_DELTAT *) ptr; + ptr += sizeof (YM_DELTAT); +#endif + /* set channel state pointer */ + OPL->type = type; + OPL->clock = clock; + OPL->rate = rate; + OPL->max_ch = max_ch; + /* init grobal tables */ + OPL_initalize (OPL); + /* reset chip */ + OPLResetChip (OPL); + return OPL; +} + +/* ---------- Destroy one of vietual YM3812 ---------- */ +void +OPLDestroy (FM_OPL * OPL) +{ + void *t = OPL; + + OPL_UnLockTable (); + free (t); +} + +/* ---------- Option handlers ---------- */ + +void +OPLSetTimerHandler (FM_OPL * OPL, OPL_TIMERHANDLER TimerHandler, + int channelOffset) +{ + OPL->TimerHandler = TimerHandler; + OPL->TimerParam = channelOffset; +} + +void +OPLSetIRQHandler (FM_OPL * OPL, OPL_IRQHANDLER IRQHandler, int param) +{ + OPL->IRQHandler = IRQHandler; + OPL->IRQParam = param; +} + +void +OPLSetUpdateHandler (FM_OPL * OPL, OPL_UPDATEHANDLER UpdateHandler, int param) +{ + OPL->UpdateHandler = UpdateHandler; + OPL->UpdateParam = param; +} + +#if BUILD_Y8950 +void +OPLSetPortHandler (FM_OPL * OPL, OPL_PORTHANDLER_W PortHandler_w, + OPL_PORTHANDLER_R PortHandler_r, int param) +{ + OPL->porthandler_w = PortHandler_w; + OPL->porthandler_r = PortHandler_r; + OPL->port_param = param; +} + +void +OPLSetKeyboardHandler (FM_OPL * OPL, OPL_PORTHANDLER_W KeyboardHandler_w, + OPL_PORTHANDLER_R KeyboardHandler_r, int param) +{ + OPL->keyboardhandler_w = KeyboardHandler_w; + OPL->keyboardhandler_r = KeyboardHandler_r; + OPL->keyboard_param = param; +} +#endif +/* ---------- YM3812 I/O interface ---------- */ +int +OPLWrite (FM_OPL * OPL, int a, int v) +{ + if (!(a & 1)) { /* address port */ + OPL->address = v & 0xff; + } else { /* data port */ + if (OPL->UpdateHandler) + OPL->UpdateHandler (OPL->UpdateParam, 0); + OPLWriteReg (OPL, OPL->address, v); + } + return OPL->status >> 7; +} + +unsigned char +OPLRead (FM_OPL * OPL, int a) +{ + if (!(a & 1)) { /* status port */ + return OPL->status & (OPL->statusmask | 0x80); + } + /* data port */ + switch (OPL->address) { + case 0x05: /* KeyBoard IN */ + if (OPL->type & OPL_TYPE_KEYBOARD) { + if (OPL->keyboardhandler_r) + return OPL->keyboardhandler_r (OPL->keyboard_param); + else + LOG (LOG_WAR, ("OPL:read unmapped KEYBOARD port\n")); + } + return 0; +#if 0 + case 0x0f: /* ADPCM-DATA */ + return 0; +#endif + case 0x19: /* I/O DATA */ + if (OPL->type & OPL_TYPE_IO) { + if (OPL->porthandler_r) + return OPL->porthandler_r (OPL->port_param); + else + LOG (LOG_WAR, ("OPL:read unmapped I/O port\n")); + } + return 0; + case 0x1a: /* PCM-DATA */ + return 0; + } + return 0; +} + +int +OPLTimerOver (FM_OPL * OPL, int c) +{ + if (c) { /* Timer B */ + OPL_STATUS_SET (OPL, 0x20); + } else { /* Timer A */ + OPL_STATUS_SET (OPL, 0x40); + /* CSM mode key,TL controll */ + if (OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */ + int ch; + + if (OPL->UpdateHandler) + OPL->UpdateHandler (OPL->UpdateParam, 0); + for (ch = 0; ch < 9; ch++) + CSMKeyControll (&OPL->P_CH[ch]); + } + } + /* reload timer */ + if (OPL->TimerHandler) + (OPL->TimerHandler) (OPL->TimerParam + c, + (double) OPL->T[c] * OPL->TimerBase); + return OPL->status >> 7; +} |