diff options
Diffstat (limited to 'gst-libs/gst/idct/intidct.c')
-rw-r--r-- | gst-libs/gst/idct/intidct.c | 380 |
1 files changed, 0 insertions, 380 deletions
diff --git a/gst-libs/gst/idct/intidct.c b/gst-libs/gst/idct/intidct.c deleted file mode 100644 index d2945348..00000000 --- a/gst-libs/gst/idct/intidct.c +++ /dev/null @@ -1,380 +0,0 @@ -/* - * jrevdct.c - * - * Copyright (C) 1991, 1992, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the basic inverse-DCT transformation subroutine. - * - * This implementation is based on an algorithm described in - * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT - * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, - * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. - * The primary algorithm described there uses 11 multiplies and 29 adds. - * We use their alternate method with 12 multiplies and 32 adds. - * The advantage of this method is that no data path contains more than one - * multiplication; this allows a very simple and accurate implementation in - * scaled fixed-point arithmetic, with a minimal number of shifts. - */ - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#include "dct.h" - -/* We assume that right shift corresponds to signed division by 2 with - * rounding towards minus infinity. This is correct for typical "arithmetic - * shift" instructions that shift in copies of the sign bit. But some - * C compilers implement >> with an unsigned shift. For these machines you - * must define RIGHT_SHIFT_IS_UNSIGNED. - * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. - * It is only applied with constant shift counts. SHIFT_TEMPS must be - * included in the variables of any routine using RIGHT_SHIFT. - */ - -#ifdef RIGHT_SHIFT_IS_UNSIGNED -#define SHIFT_TEMPS INT32 shift_temp; -#define RIGHT_SHIFT(x,shft) \ - ((shift_temp = (x)) < 0 ? \ - (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ - (shift_temp >> (shft))) -#else -#define SHIFT_TEMPS -#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) -#endif - - -/* - * This routine is specialized to the case DCTSIZE = 8. - */ - -#if DCTSIZE != 8 -Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */ -#endif -/* - * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT - * on each column. Direct algorithms are also available, but they are - * much more complex and seem not to be any faster when reduced to code. - * - * The poop on this scaling stuff is as follows: - * - * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) - * larger than the true IDCT outputs. The final outputs are therefore - * a factor of N larger than desired; since N=8 this can be cured by - * a simple right shift at the end of the algorithm. The advantage of - * this arrangement is that we save two multiplications per 1-D IDCT, - * because the y0 and y4 inputs need not be divided by sqrt(N). - * - * We have to do addition and subtraction of the integer inputs, which - * is no problem, and multiplication by fractional constants, which is - * a problem to do in integer arithmetic. We multiply all the constants - * by CONST_SCALE and convert them to integer constants (thus retaining - * CONST_BITS bits of precision in the constants). After doing a - * multiplication we have to divide the product by CONST_SCALE, with proper - * rounding, to produce the correct output. This division can be done - * cheaply as a right shift of CONST_BITS bits. We postpone shifting - * as long as possible so that partial sums can be added together with - * full fractional precision. - * - * The outputs of the first pass are scaled up by PASS1_BITS bits so that - * they are represented to better-than-integral precision. These outputs - * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word - * with the recommended scaling. (To scale up 12-bit sample data further, an - * intermediate INT32 array would be needed.) - * - * To avoid overflow of the 32-bit intermediate results in pass 2, we must - * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis - * shows that the values given below are the most effective. - */ -#ifdef EIGHT_BIT_SAMPLES -#define CONST_BITS 13 -#define PASS1_BITS 2 -#else -#define CONST_BITS 13 -#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ -#endif -#define ONE ((INT32) 1) -#define CONST_SCALE (ONE << CONST_BITS) -/* Convert a positive real constant to an integer scaled by CONST_SCALE. */ -#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) -/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus - * causing a lot of useless floating-point operations at run time. - * To get around this we use the following pre-calculated constants. - * If you change CONST_BITS you may want to add appropriate values. - * (With a reasonable C compiler, you can just rely on the FIX() macro...) - */ -#if CONST_BITS == 13 -#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ -#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ -#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ -#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ -#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ -#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ -#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ -#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ -#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ -#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ -#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ -#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ -#else -#define FIX_0_298631336 FIX(0.298631336) -#define FIX_0_390180644 FIX(0.390180644) -#define FIX_0_541196100 FIX(0.541196100) -#define FIX_0_765366865 FIX(0.765366865) -#define FIX_0_899976223 FIX(0.899976223) -#define FIX_1_175875602 FIX(1.175875602) -#define FIX_1_501321110 FIX(1.501321110) -#define FIX_1_847759065 FIX(1.847759065) -#define FIX_1_961570560 FIX(1.961570560) -#define FIX_2_053119869 FIX(2.053119869) -#define FIX_2_562915447 FIX(2.562915447) -#define FIX_3_072711026 FIX(3.072711026) -#endif -/* Descale and correctly round an INT32 value that's scaled by N bits. - * We assume RIGHT_SHIFT rounds towards minus infinity, so adding - * the fudge factor is correct for either sign of X. - */ -#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) -/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. - * For 8-bit samples with the recommended scaling, all the variable - * and constant values involved are no more than 16 bits wide, so a - * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; - * this provides a useful speedup on many machines. - * There is no way to specify a 16x16->32 multiply in portable C, but - * some C compilers will do the right thing if you provide the correct - * combination of casts. - * NB: for 12-bit samples, a full 32-bit multiplication will be needed. - */ -#ifdef EIGHT_BIT_SAMPLES -#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ -#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const))) -#endif -#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ -#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const))) -#endif -#endif -#ifndef MULTIPLY /* default definition */ -#define MULTIPLY(var,const) ((var) * (const)) -#endif -/* - * Perform the inverse DCT on one block of coefficients. - */ - void -gst_idct_int_idct (DCTBLOCK data) -{ - INT32 tmp0, tmp1, tmp2, tmp3; - INT32 tmp10, tmp11, tmp12, tmp13; - INT32 z1, z2, z3, z4, z5; - register DCTELEM *dataptr; - int rowctr; - - SHIFT_TEMPS - /* Pass 1: process rows. */ - /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ - /* furthermore, we scale the results by 2**PASS1_BITS. */ - dataptr = data; - for (rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--) { - /* Due to quantization, we will usually find that many of the input - * coefficients are zero, especially the AC terms. We can exploit this - * by short-circuiting the IDCT calculation for any row in which all - * the AC terms are zero. In that case each output is equal to the - * DC coefficient (with scale factor as needed). - * With typical images and quantization tables, half or more of the - * row DCT calculations can be simplified this way. - */ - - if ((dataptr[1] | dataptr[2] | dataptr[3] | dataptr[4] | - dataptr[5] | dataptr[6] | dataptr[7]) == 0) { - /* AC terms all zero */ - DCTELEM dcval = (DCTELEM) (dataptr[0] << PASS1_BITS); - - dataptr[0] = dcval; - dataptr[1] = dcval; - dataptr[2] = dcval; - dataptr[3] = dcval; - dataptr[4] = dcval; - dataptr[5] = dcval; - dataptr[6] = dcval; - dataptr[7] = dcval; - - dataptr += DCTSIZE; /* advance pointer to next row */ - continue; - } - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = (INT32) dataptr[2]; - z3 = (INT32) dataptr[6]; - - z1 = MULTIPLY (z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY (z3, -FIX_1_847759065); - tmp3 = z1 + MULTIPLY (z2, FIX_0_765366865); - - tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS; - tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS; - - tmp10 = tmp0 + tmp3; - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = (INT32) dataptr[7]; - tmp1 = (INT32) dataptr[5]; - tmp2 = (INT32) dataptr[3]; - tmp3 = (INT32) dataptr[1]; - - z1 = tmp0 + tmp3; - z2 = tmp1 + tmp2; - z3 = tmp0 + tmp2; - z4 = tmp1 + tmp3; - z5 = MULTIPLY (z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ - - tmp0 = MULTIPLY (tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp1 = MULTIPLY (tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY (tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp3 = MULTIPLY (tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - z1 = MULTIPLY (z1, -FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - z2 = MULTIPLY (z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - z3 = MULTIPLY (z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z4 = MULTIPLY (z4, -FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - - z3 += z5; - z4 += z5; - - tmp0 += z1 + z3; - tmp1 += z2 + z4; - tmp2 += z2 + z3; - tmp3 += z1 + z4; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - dataptr[0] = (DCTELEM) DESCALE (tmp10 + tmp3, CONST_BITS - PASS1_BITS); - dataptr[7] = (DCTELEM) DESCALE (tmp10 - tmp3, CONST_BITS - PASS1_BITS); - dataptr[1] = (DCTELEM) DESCALE (tmp11 + tmp2, CONST_BITS - PASS1_BITS); - dataptr[6] = (DCTELEM) DESCALE (tmp11 - tmp2, CONST_BITS - PASS1_BITS); - dataptr[2] = (DCTELEM) DESCALE (tmp12 + tmp1, CONST_BITS - PASS1_BITS); - dataptr[5] = (DCTELEM) DESCALE (tmp12 - tmp1, CONST_BITS - PASS1_BITS); - dataptr[3] = (DCTELEM) DESCALE (tmp13 + tmp0, CONST_BITS - PASS1_BITS); - dataptr[4] = (DCTELEM) DESCALE (tmp13 - tmp0, CONST_BITS - PASS1_BITS); - - dataptr += DCTSIZE; /* advance pointer to next row */ - } - - /* Pass 2: process columns. */ - /* Note that we must descale the results by a factor of 8 == 2**3, */ - /* and also undo the PASS1_BITS scaling. */ - - dataptr = data; - for (rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--) { - /* Columns of zeroes can be exploited in the same way as we did with rows. - * However, the row calculation has created many nonzero AC terms, so the - * simplification applies less often (typically 5% to 10% of the time). - * On machines with very fast multiplication, it's possible that the - * test takes more time than it's worth. In that case this section - * may be commented out. - */ - -#ifndef NO_ZERO_COLUMN_TEST - if ((dataptr[DCTSIZE * 1] | dataptr[DCTSIZE * 2] | dataptr[DCTSIZE * 3] | - dataptr[DCTSIZE * 4] | dataptr[DCTSIZE * 5] | dataptr[DCTSIZE * 6] | - dataptr[DCTSIZE * 7]) == 0) { - /* AC terms all zero */ - DCTELEM dcval = (DCTELEM) DESCALE ((INT32) dataptr[0], PASS1_BITS + 3); - - dataptr[DCTSIZE * 0] = dcval; - dataptr[DCTSIZE * 1] = dcval; - dataptr[DCTSIZE * 2] = dcval; - dataptr[DCTSIZE * 3] = dcval; - dataptr[DCTSIZE * 4] = dcval; - dataptr[DCTSIZE * 5] = dcval; - dataptr[DCTSIZE * 6] = dcval; - dataptr[DCTSIZE * 7] = dcval; - - dataptr++; /* advance pointer to next column */ - continue; - } -#endif - - /* Even part: reverse the even part of the forward DCT. */ - /* The rotator is sqrt(2)*c(-6). */ - - z2 = (INT32) dataptr[DCTSIZE * 2]; - z3 = (INT32) dataptr[DCTSIZE * 6]; - - z1 = MULTIPLY (z2 + z3, FIX_0_541196100); - tmp2 = z1 + MULTIPLY (z3, -FIX_1_847759065); - tmp3 = z1 + MULTIPLY (z2, FIX_0_765366865); - - tmp0 = - ((INT32) dataptr[DCTSIZE * 0] + - (INT32) dataptr[DCTSIZE * 4]) << CONST_BITS; - tmp1 = - ((INT32) dataptr[DCTSIZE * 0] - - (INT32) dataptr[DCTSIZE * 4]) << CONST_BITS; - - tmp10 = tmp0 + tmp3; - tmp13 = tmp0 - tmp3; - tmp11 = tmp1 + tmp2; - tmp12 = tmp1 - tmp2; - - /* Odd part per figure 8; the matrix is unitary and hence its - * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. - */ - - tmp0 = (INT32) dataptr[DCTSIZE * 7]; - tmp1 = (INT32) dataptr[DCTSIZE * 5]; - tmp2 = (INT32) dataptr[DCTSIZE * 3]; - tmp3 = (INT32) dataptr[DCTSIZE * 1]; - - z1 = tmp0 + tmp3; - z2 = tmp1 + tmp2; - z3 = tmp0 + tmp2; - z4 = tmp1 + tmp3; - z5 = MULTIPLY (z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ - - tmp0 = MULTIPLY (tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ - tmp1 = MULTIPLY (tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ - tmp2 = MULTIPLY (tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ - tmp3 = MULTIPLY (tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ - z1 = MULTIPLY (z1, -FIX_0_899976223); /* sqrt(2) * (c7-c3) */ - z2 = MULTIPLY (z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ - z3 = MULTIPLY (z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ - z4 = MULTIPLY (z4, -FIX_0_390180644); /* sqrt(2) * (c5-c3) */ - - z3 += z5; - z4 += z5; - - tmp0 += z1 + z3; - tmp1 += z2 + z4; - tmp2 += z2 + z3; - tmp3 += z1 + z4; - - /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ - - dataptr[DCTSIZE * 0] = (DCTELEM) DESCALE (tmp10 + tmp3, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 7] = (DCTELEM) DESCALE (tmp10 - tmp3, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 1] = (DCTELEM) DESCALE (tmp11 + tmp2, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 6] = (DCTELEM) DESCALE (tmp11 - tmp2, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 2] = (DCTELEM) DESCALE (tmp12 + tmp1, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 5] = (DCTELEM) DESCALE (tmp12 - tmp1, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 3] = (DCTELEM) DESCALE (tmp13 + tmp0, - CONST_BITS + PASS1_BITS + 3); - dataptr[DCTSIZE * 4] = (DCTELEM) DESCALE (tmp13 - tmp0, - CONST_BITS + PASS1_BITS + 3); - - dataptr++; /* advance pointer to next column */ - } -} |