summaryrefslogtreecommitdiffstats
path: root/gst-libs/gst/idct/intidct.c
diff options
context:
space:
mode:
Diffstat (limited to 'gst-libs/gst/idct/intidct.c')
-rw-r--r--gst-libs/gst/idct/intidct.c380
1 files changed, 0 insertions, 380 deletions
diff --git a/gst-libs/gst/idct/intidct.c b/gst-libs/gst/idct/intidct.c
deleted file mode 100644
index d2945348..00000000
--- a/gst-libs/gst/idct/intidct.c
+++ /dev/null
@@ -1,380 +0,0 @@
-/*
- * jrevdct.c
- *
- * Copyright (C) 1991, 1992, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the basic inverse-DCT transformation subroutine.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- */
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include "dct.h"
-
-/* We assume that right shift corresponds to signed division by 2 with
- * rounding towards minus infinity. This is correct for typical "arithmetic
- * shift" instructions that shift in copies of the sign bit. But some
- * C compilers implement >> with an unsigned shift. For these machines you
- * must define RIGHT_SHIFT_IS_UNSIGNED.
- * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
- * It is only applied with constant shift counts. SHIFT_TEMPS must be
- * included in the variables of any routine using RIGHT_SHIFT.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define SHIFT_TEMPS INT32 shift_temp;
-#define RIGHT_SHIFT(x,shft) \
- ((shift_temp = (x)) < 0 ? \
- (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
- (shift_temp >> (shft)))
-#else
-#define SHIFT_TEMPS
-#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-/*
- * This routine is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
-Sorry, this code only copes with 8 x8 DCTs. /* deliberate syntax err */
-#endif
-/*
- * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- * larger than the true IDCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D IDCT,
- * because the y0 and y4 inputs need not be divided by sqrt(N).
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (To scale up 12-bit sample data further, an
- * intermediate INT32 array would be needed.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
-#ifdef EIGHT_BIT_SAMPLES
-#define CONST_BITS 13
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 13
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-#define ONE ((INT32) 1)
-#define CONST_SCALE (ONE << CONST_BITS)
-/* Convert a positive real constant to an integer scaled by CONST_SCALE. */
-#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-#if CONST_BITS == 13
-#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
-#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
-#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
-#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
-#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
-#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
-#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
-#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
-#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
-#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
-#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
-#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
-#else
-#define FIX_0_298631336 FIX(0.298631336)
-#define FIX_0_390180644 FIX(0.390180644)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_765366865 FIX(0.765366865)
-#define FIX_0_899976223 FIX(0.899976223)
-#define FIX_1_175875602 FIX(1.175875602)
-#define FIX_1_501321110 FIX(1.501321110)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_1_961570560 FIX(1.961570560)
-#define FIX_2_053119869 FIX(2.053119869)
-#define FIX_2_562915447 FIX(2.562915447)
-#define FIX_3_072711026 FIX(3.072711026)
-#endif
-/* Descale and correctly round an INT32 value that's scaled by N bits.
- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- * the fudge factor is correct for either sign of X.
- */
-#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
- * this provides a useful speedup on many machines.
- * There is no way to specify a 16x16->32 multiply in portable C, but
- * some C compilers will do the right thing if you provide the correct
- * combination of casts.
- * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
- */
-#ifdef EIGHT_BIT_SAMPLES
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const)))
-#endif
-#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
-#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const)))
-#endif
-#endif
-#ifndef MULTIPLY /* default definition */
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-/*
- * Perform the inverse DCT on one block of coefficients.
- */
- void
-gst_idct_int_idct (DCTBLOCK data)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3, z4, z5;
- register DCTELEM *dataptr;
- int rowctr;
-
- SHIFT_TEMPS
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- dataptr = data;
- for (rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any row in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * row DCT calculations can be simplified this way.
- */
-
- if ((dataptr[1] | dataptr[2] | dataptr[3] | dataptr[4] |
- dataptr[5] | dataptr[6] | dataptr[7]) == 0) {
- /* AC terms all zero */
- DCTELEM dcval = (DCTELEM) (dataptr[0] << PASS1_BITS);
-
- dataptr[0] = dcval;
- dataptr[1] = dcval;
- dataptr[2] = dcval;
- dataptr[3] = dcval;
- dataptr[4] = dcval;
- dataptr[5] = dcval;
- dataptr[6] = dcval;
- dataptr[7] = dcval;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) dataptr[2];
- z3 = (INT32) dataptr[6];
-
- z1 = MULTIPLY (z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY (z3, -FIX_1_847759065);
- tmp3 = z1 + MULTIPLY (z2, FIX_0_765366865);
-
- tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS;
- tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) dataptr[7];
- tmp1 = (INT32) dataptr[5];
- tmp2 = (INT32) dataptr[3];
- tmp3 = (INT32) dataptr[1];
-
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY (z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-
- tmp0 = MULTIPLY (tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY (tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY (tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY (tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY (z1, -FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY (z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY (z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY (z4, -FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[0] = (DCTELEM) DESCALE (tmp10 + tmp3, CONST_BITS - PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE (tmp10 - tmp3, CONST_BITS - PASS1_BITS);
- dataptr[1] = (DCTELEM) DESCALE (tmp11 + tmp2, CONST_BITS - PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE (tmp11 - tmp2, CONST_BITS - PASS1_BITS);
- dataptr[2] = (DCTELEM) DESCALE (tmp12 + tmp1, CONST_BITS - PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE (tmp12 - tmp1, CONST_BITS - PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE (tmp13 + tmp0, CONST_BITS - PASS1_BITS);
- dataptr[4] = (DCTELEM) DESCALE (tmp13 - tmp0, CONST_BITS - PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- dataptr = data;
- for (rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--) {
- /* Columns of zeroes can be exploited in the same way as we did with rows.
- * However, the row calculation has created many nonzero AC terms, so the
- * simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
-#ifndef NO_ZERO_COLUMN_TEST
- if ((dataptr[DCTSIZE * 1] | dataptr[DCTSIZE * 2] | dataptr[DCTSIZE * 3] |
- dataptr[DCTSIZE * 4] | dataptr[DCTSIZE * 5] | dataptr[DCTSIZE * 6] |
- dataptr[DCTSIZE * 7]) == 0) {
- /* AC terms all zero */
- DCTELEM dcval = (DCTELEM) DESCALE ((INT32) dataptr[0], PASS1_BITS + 3);
-
- dataptr[DCTSIZE * 0] = dcval;
- dataptr[DCTSIZE * 1] = dcval;
- dataptr[DCTSIZE * 2] = dcval;
- dataptr[DCTSIZE * 3] = dcval;
- dataptr[DCTSIZE * 4] = dcval;
- dataptr[DCTSIZE * 5] = dcval;
- dataptr[DCTSIZE * 6] = dcval;
- dataptr[DCTSIZE * 7] = dcval;
-
- dataptr++; /* advance pointer to next column */
- continue;
- }
-#endif
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) dataptr[DCTSIZE * 2];
- z3 = (INT32) dataptr[DCTSIZE * 6];
-
- z1 = MULTIPLY (z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY (z3, -FIX_1_847759065);
- tmp3 = z1 + MULTIPLY (z2, FIX_0_765366865);
-
- tmp0 =
- ((INT32) dataptr[DCTSIZE * 0] +
- (INT32) dataptr[DCTSIZE * 4]) << CONST_BITS;
- tmp1 =
- ((INT32) dataptr[DCTSIZE * 0] -
- (INT32) dataptr[DCTSIZE * 4]) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) dataptr[DCTSIZE * 7];
- tmp1 = (INT32) dataptr[DCTSIZE * 5];
- tmp2 = (INT32) dataptr[DCTSIZE * 3];
- tmp3 = (INT32) dataptr[DCTSIZE * 1];
-
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY (z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-
- tmp0 = MULTIPLY (tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY (tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY (tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY (tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY (z1, -FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY (z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY (z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY (z4, -FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[DCTSIZE * 0] = (DCTELEM) DESCALE (tmp10 + tmp3,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 7] = (DCTELEM) DESCALE (tmp10 - tmp3,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 1] = (DCTELEM) DESCALE (tmp11 + tmp2,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 6] = (DCTELEM) DESCALE (tmp11 - tmp2,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 2] = (DCTELEM) DESCALE (tmp12 + tmp1,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 5] = (DCTELEM) DESCALE (tmp12 - tmp1,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 3] = (DCTELEM) DESCALE (tmp13 + tmp0,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE * 4] = (DCTELEM) DESCALE (tmp13 - tmp0,
- CONST_BITS + PASS1_BITS + 3);
-
- dataptr++; /* advance pointer to next column */
- }
-}