diff options
Diffstat (limited to 'gst/replaygain/rganalysis.c')
-rw-r--r-- | gst/replaygain/rganalysis.c | 777 |
1 files changed, 0 insertions, 777 deletions
diff --git a/gst/replaygain/rganalysis.c b/gst/replaygain/rganalysis.c deleted file mode 100644 index 147eef85..00000000 --- a/gst/replaygain/rganalysis.c +++ /dev/null @@ -1,777 +0,0 @@ -/* GStreamer ReplayGain analysis - * - * Copyright (C) 2006 Rene Stadler <mail@renestadler.de> - * Copyright (C) 2001 David Robinson <David@Robinson.org> - * Glen Sawyer <glensawyer@hotmail.com> - * - * rganalysis.c: Analyze raw audio data in accordance with ReplayGain - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public License - * as published by the Free Software Foundation; either version 2.1 of - * the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA - * 02110-1301 USA - */ - -/* Based on code with Copyright (C) 2001 David Robinson - * <David@Robinson.org> and Glen Sawyer <glensawyer@hotmail.com>, - * which is distributed under the LGPL as part of the vorbisgain - * program. The original code also mentions Frank Klemm - * (http://www.uni-jena.de/~pfk/mpp/) for having contributed lots of - * good code. Specifically, this is based on the file - * "gain_analysis.c" from vorbisgain version 0.34. - */ - -/* Room for future improvement: Mono data is currently in fact copied - * to two channels which get processed normally. This means that mono - * input data is processed twice. - */ - -/* Helpful information for understanding this code: The two IIR - * filters depend on previous input _and_ previous output samples (up - * to the filter's order number of samples). This explains the whole - * lot of memcpy'ing done in rg_analysis_analyze and why the context - * holds so many buffers. - */ - -#include <math.h> -#include <string.h> -#include <glib.h> - -#include "rganalysis.h" - -#define YULE_ORDER 10 -#define BUTTER_ORDER 2 -/* Percentile which is louder than the proposed level: */ -#define RMS_PERCENTILE 95 -/* Duration of RMS window in milliseconds: */ -#define RMS_WINDOW_MSECS 50 -/* Histogram array elements per dB: */ -#define STEPS_PER_DB 100 -/* Histogram upper bound in dB (normal max. values in the wild are - * assumed to be around 70, 80 dB): */ -#define MAX_DB 120 -/* Calibration value: */ -#define PINK_REF 64.82 /* 298640883795 */ - -#define MAX_ORDER MAX (BUTTER_ORDER, YULE_ORDER) -#define MAX_SAMPLE_RATE 48000 -/* The + 999 has the effect of ceil()ing: */ -#define MAX_SAMPLE_WINDOW (guint) \ - ((MAX_SAMPLE_RATE * RMS_WINDOW_MSECS + 999) / 1000) - -/* Analysis result accumulator. */ - -struct _RgAnalysisAcc -{ - guint32 histogram[STEPS_PER_DB * MAX_DB]; - gdouble peak; -}; - -typedef struct _RgAnalysisAcc RgAnalysisAcc; - -/* Analysis context. */ - -struct _RgAnalysisCtx -{ - /* Filter buffers for left channel. */ - gfloat inprebuf_l[MAX_ORDER * 2]; - gfloat *inpre_l; - gfloat stepbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER]; - gfloat *step_l; - gfloat outbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER]; - gfloat *out_l; - /* Filter buffers for right channel. */ - gfloat inprebuf_r[MAX_ORDER * 2]; - gfloat *inpre_r; - gfloat stepbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER]; - gfloat *step_r; - gfloat outbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER]; - gfloat *out_r; - - /* Number of samples to reach duration of the RMS window: */ - guint window_n_samples; - /* Progress of the running window: */ - guint window_n_samples_done; - gdouble window_square_sum; - - gint sample_rate; - gint sample_rate_index; - - RgAnalysisAcc track; - RgAnalysisAcc album; -}; - -/* Filter coefficients for the IIR filters that form the equal - * loudness filter. XFilter[ctx->sample_rate_index] gives the array - * of the X coefficients (A or B) for the configured sample rate. */ - -#ifdef _MSC_VER -/* Disable double-to-float warning: */ -/* A better solution would be to append 'f' to each constant, but that - * makes the code ugly. */ -#pragma warning ( disable : 4305 ) -#endif - -static const gfloat AYule[9][11] = { - {1., -3.84664617118067, 7.81501653005538, -11.34170355132042, - 13.05504219327545, -12.28759895145294, 9.48293806319790, - -5.87257861775999, 2.75465861874613, -0.86984376593551, - 0.13919314567432}, - {1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280, - -8.81498681370155, 6.85401540936998, -4.39470996079559, - 2.19611684890774, -0.75104302451432, 0.13149317958808}, - {1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713, - -1.67148153367602, 1.00595954808547, -0.45953458054983, - 0.16378164858596, -0.05032077717131, 0.02347897407020}, - {1., -1.61273165137247, 1.07977492259970, -0.25656257754070, - -0.16276719120440, -0.22638893773906, 0.39120800788284, - -0.22138138954925, 0.04500235387352, 0.02005851806501, - 0.00302439095741}, - {1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438, - 0.47854794562326, -0.12453458140019, -0.04067510197014, - 0.08333755284107, -0.04237348025746, 0.02977207319925}, - {1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124, - -0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683, - 0.05784820375801, 0.03222754072173}, - {1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858, - 0.45054734505008, -0.33032403314006, 0.06739368333110, - -0.04784254229033, 0.01639907836189, 0.01807364323573}, - {1., -0.51035327095184, -0.31863563325245, -0.20256413484477, - 0.14728154134330, 0.38952639978999, -0.23313271880868, - -0.05246019024463, -0.02505961724053, 0.02442357316099, - 0.01818801111503}, - {1., -0.25049871956020, -0.43193942311114, -0.03424681017675, - -0.04678328784242, 0.26408300200955, 0.15113130533216, - -0.17556493366449, -0.18823009262115, 0.05477720428674, - 0.04704409688120} -}; - -static const gfloat BYule[9][11] = { - {0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959, - -0.01655260341619, 0.02161526843274, -0.02074045215285, - 0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916}, - {0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469, - -0.00834990904936, 0.02245293253339, -0.02596338512915, - 0.01624864962975, -0.00240879051584, 0.00674613682247, - -0.00187763777362}, - {0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798, - -0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049, - -0.01390589421898, 0.00651420667831, -0.00881362733839}, - {0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664, - -0.00915702933434, -0.02364141202522, -0.00584456039913, - 0.06276101321749, -0.00000828086748, 0.00205861885564, - -0.02950134983287}, - {0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203, - -0.07834489609479, -0.00469977914380, -0.00589500224440, - 0.05724228140351, 0.00832043980773, -0.01635381384540, - -0.01760176568150}, - {0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551, - 0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251, - -0.01863887810927, -0.03193428438915, 0.00541907748707}, - {0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672, - -0.18901604199609, 0.30931782841830, -0.27562961986224, - 0.00647310677246, 0.08647503780351, -0.03788984554840, - -0.00588215443421}, - {0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522, - 0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333, - 0.06920467763959, -0.03721611395801, -0.00749618797172}, - {0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415, - -0.10214864179676, 0.14590772289388, -0.02459864859345, - -0.11202315195388, -0.04060034127000, 0.04788665548180, - -0.02217936801134} -}; - -static const gfloat AButter[9][3] = { - {1., -1.97223372919527, 0.97261396931306}, - {1., -1.96977855582618, 0.97022847566350}, - {1., -1.95835380975398, 0.95920349965459}, - {1., -1.95002759149878, 0.95124613669835}, - {1., -1.94561023566527, 0.94705070426118}, - {1., -1.92783286977036, 0.93034775234268}, - {1., -1.91858953033784, 0.92177618768381}, - {1., -1.91542108074780, 0.91885558323625}, - {1., -1.88903307939452, 0.89487434461664} -}; - -static const gfloat BButter[9][3] = { - {0.98621192462708, -1.97242384925416, 0.98621192462708}, - {0.98500175787242, -1.97000351574484, 0.98500175787242}, - {0.97938932735214, -1.95877865470428, 0.97938932735214}, - {0.97531843204928, -1.95063686409857, 0.97531843204928}, - {0.97316523498161, -1.94633046996323, 0.97316523498161}, - {0.96454515552826, -1.92909031105652, 0.96454515552826}, - {0.96009142950541, -1.92018285901082, 0.96009142950541}, - {0.95856916599601, -1.91713833199203, 0.95856916599601}, - {0.94597685600279, -1.89195371200558, 0.94597685600279} -}; - -#ifdef _MSC_VER -#pragma warning ( default : 4305 ) -#endif - -/* Filter functions. These access elements with negative indices of - * the input and output arrays (up to the filter's order). */ - -/* For much better performance, the function below has been - * implemented by unrolling the inner loop for our two use cases. */ - -/* - * static inline void - * apply_filter (const gfloat * input, gfloat * output, guint n_samples, - * const gfloat * a, const gfloat * b, guint order) - * { - * gfloat y; - * gint i, k; - * - * for (i = 0; i < n_samples; i++) { - * y = input[i] * b[0]; - * for (k = 1; k <= order; k++) - * y += input[i - k] * b[k] - output[i - k] * a[k]; - * output[i] = y; - * } - * } - */ - -static inline void -yule_filter (const gfloat * input, gfloat * output, - const gfloat * a, const gfloat * b) -{ - /* 1e-10 is added below to avoid running into denormals when operating on - * near silence. */ - - output[0] = 1e-10 + input[0] * b[0] - + input[-1] * b[1] - output[-1] * a[1] - + input[-2] * b[2] - output[-2] * a[2] - + input[-3] * b[3] - output[-3] * a[3] - + input[-4] * b[4] - output[-4] * a[4] - + input[-5] * b[5] - output[-5] * a[5] - + input[-6] * b[6] - output[-6] * a[6] - + input[-7] * b[7] - output[-7] * a[7] - + input[-8] * b[8] - output[-8] * a[8] - + input[-9] * b[9] - output[-9] * a[9] - + input[-10] * b[10] - output[-10] * a[10]; -} - -static inline void -butter_filter (const gfloat * input, gfloat * output, - const gfloat * a, const gfloat * b) -{ - output[0] = input[0] * b[0] - + input[-1] * b[1] - output[-1] * a[1] - + input[-2] * b[2] - output[-2] * a[2]; -} - -/* Because butter_filter and yule_filter are inlined, this function is - * a bit blown-up (code-size wise), but not inlining gives a ca. 40% - * performance penalty. */ - -static inline void -apply_filters (const RgAnalysisCtx * ctx, const gfloat * input_l, - const gfloat * input_r, guint n_samples) -{ - const gfloat *ayule = AYule[ctx->sample_rate_index]; - const gfloat *byule = BYule[ctx->sample_rate_index]; - const gfloat *abutter = AButter[ctx->sample_rate_index]; - const gfloat *bbutter = BButter[ctx->sample_rate_index]; - gint pos = ctx->window_n_samples_done; - gint i; - - for (i = 0; i < n_samples; i++, pos++) { - yule_filter (input_l + i, ctx->step_l + pos, ayule, byule); - butter_filter (ctx->step_l + pos, ctx->out_l + pos, abutter, bbutter); - - yule_filter (input_r + i, ctx->step_r + pos, ayule, byule); - butter_filter (ctx->step_r + pos, ctx->out_r + pos, abutter, bbutter); - } -} - -/* Clear filter buffer state and current RMS window. */ - -static void -reset_filters (RgAnalysisCtx * ctx) -{ - gint i; - - for (i = 0; i < MAX_ORDER; i++) { - - ctx->inprebuf_l[i] = 0.; - ctx->stepbuf_l[i] = 0.; - ctx->outbuf_l[i] = 0.; - - ctx->inprebuf_r[i] = 0.; - ctx->stepbuf_r[i] = 0.; - ctx->outbuf_r[i] = 0.; - } - - ctx->window_square_sum = 0.; - ctx->window_n_samples_done = 0; -} - -/* Accumulator functions. */ - -/* Add two accumulators in-place. The sum is defined as the result of - * the vector sum of the histogram array and the maximum value of the - * peak field. Thus "adding" the accumulators for all tracks yields - * the correct result for obtaining the album gain and peak. */ - -static void -accumulator_add (RgAnalysisAcc * acc, const RgAnalysisAcc * acc_other) -{ - gint i; - - for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++) - acc->histogram[i] += acc_other->histogram[i]; - - acc->peak = MAX (acc->peak, acc_other->peak); -} - -/* Reset an accumulator to zero. */ - -static void -accumulator_clear (RgAnalysisAcc * acc) -{ - memset (acc->histogram, 0, sizeof (acc->histogram)); - acc->peak = 0.; -} - -/* Obtain final analysis result from an accumulator. Returns TRUE on - * success, FALSE on error (if accumulator is still zero). */ - -static gboolean -accumulator_result (const RgAnalysisAcc * acc, gdouble * result_gain, - gdouble * result_peak) -{ - guint32 sum = 0; - guint32 upper; - guint i; - - for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++) - sum += acc->histogram[i]; - - if (sum == 0) - /* All entries are 0: We got less than 50ms of data. */ - return FALSE; - - upper = (guint32) ceil (sum * (1. - (gdouble) (RMS_PERCENTILE / 100.))); - - for (i = G_N_ELEMENTS (acc->histogram); i--;) { - if (upper <= acc->histogram[i]) - break; - upper -= acc->histogram[i]; - } - - if (result_peak != NULL) - *result_peak = acc->peak; - if (result_gain != NULL) - *result_gain = PINK_REF - (gdouble) i / STEPS_PER_DB; - - return TRUE; -} - -/* Functions that operate on contexts, for external usage. */ - -/* Create a new context. Before it can be used, a sample rate must be - * configured using rg_analysis_set_sample_rate. */ - -RgAnalysisCtx * -rg_analysis_new (void) -{ - RgAnalysisCtx *ctx; - - ctx = g_new (RgAnalysisCtx, 1); - - ctx->inpre_l = ctx->inprebuf_l + MAX_ORDER; - ctx->step_l = ctx->stepbuf_l + MAX_ORDER; - ctx->out_l = ctx->outbuf_l + MAX_ORDER; - - ctx->inpre_r = ctx->inprebuf_r + MAX_ORDER; - ctx->step_r = ctx->stepbuf_r + MAX_ORDER; - ctx->out_r = ctx->outbuf_r + MAX_ORDER; - - ctx->sample_rate = 0; - - accumulator_clear (&ctx->track); - accumulator_clear (&ctx->album); - - return ctx; -} - -/* Adapt to given sample rate. Does nothing if already the current - * rate (returns TRUE then). Returns FALSE only if given sample rate - * is not supported. If the configured rate changes, the last - * unprocessed incomplete 50ms chunk of data is dropped because the - * filters are reset. */ - -gboolean -rg_analysis_set_sample_rate (RgAnalysisCtx * ctx, gint sample_rate) -{ - g_return_val_if_fail (ctx != NULL, FALSE); - - if (ctx->sample_rate == sample_rate) - return TRUE; - - switch (sample_rate) { - case 48000: - ctx->sample_rate_index = 0; - break; - case 44100: - ctx->sample_rate_index = 1; - break; - case 32000: - ctx->sample_rate_index = 2; - break; - case 24000: - ctx->sample_rate_index = 3; - break; - case 22050: - ctx->sample_rate_index = 4; - break; - case 16000: - ctx->sample_rate_index = 5; - break; - case 12000: - ctx->sample_rate_index = 6; - break; - case 11025: - ctx->sample_rate_index = 7; - break; - case 8000: - ctx->sample_rate_index = 8; - break; - default: - return FALSE; - } - - ctx->sample_rate = sample_rate; - /* The + 999 has the effect of ceil()ing: */ - ctx->window_n_samples = (guint) ((sample_rate * RMS_WINDOW_MSECS + 999) - / 1000); - - reset_filters (ctx); - - return TRUE; -} - -void -rg_analysis_destroy (RgAnalysisCtx * ctx) -{ - g_free (ctx); -} - -/* Entry points for analyzing sample data in common raw data formats. - * The stereo format functions expect interleaved frames. It is - * possible to pass data in different formats for the same context, - * there are no restrictions. All functions have the same signature; - * the depth argument for the float functions is not variable and must - * be given the value 32. */ - -void -rg_analysis_analyze_mono_float (RgAnalysisCtx * ctx, gconstpointer data, - gsize size, guint depth) -{ - gfloat conv_samples[512]; - const gfloat *samples = (gfloat *) data; - guint n_samples = size / sizeof (gfloat); - gint i; - - g_return_if_fail (depth == 32); - g_return_if_fail (size % sizeof (gfloat) == 0); - - while (n_samples) { - gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples)); - - n_samples -= n; - memcpy (conv_samples, samples, n * sizeof (gfloat)); - for (i = 0; i < n; i++) { - ctx->track.peak = MAX (ctx->track.peak, fabs (conv_samples[i])); - conv_samples[i] *= 32768.; - } - samples += n; - rg_analysis_analyze (ctx, conv_samples, NULL, n); - } -} - -void -rg_analysis_analyze_stereo_float (RgAnalysisCtx * ctx, gconstpointer data, - gsize size, guint depth) -{ - gfloat conv_samples_l[256]; - gfloat conv_samples_r[256]; - const gfloat *samples = (gfloat *) data; - guint n_frames = size / (sizeof (gfloat) * 2); - gint i; - - g_return_if_fail (depth == 32); - g_return_if_fail (size % (sizeof (gfloat) * 2) == 0); - - while (n_frames) { - gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l)); - - n_frames -= n; - for (i = 0; i < n; i++) { - gfloat old_sample; - - old_sample = samples[2 * i]; - ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample)); - conv_samples_l[i] = old_sample * 32768.; - - old_sample = samples[2 * i + 1]; - ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample)); - conv_samples_r[i] = old_sample * 32768.; - } - samples += 2 * n; - rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n); - } -} - -void -rg_analysis_analyze_mono_int16 (RgAnalysisCtx * ctx, gconstpointer data, - gsize size, guint depth) -{ - gfloat conv_samples[512]; - gint32 peak_sample = 0; - const gint16 *samples = (gint16 *) data; - guint n_samples = size / sizeof (gint16); - gint shift = sizeof (gint16) * 8 - depth; - gint i; - - g_return_if_fail (depth <= (sizeof (gint16) * 8)); - g_return_if_fail (size % sizeof (gint16) == 0); - - while (n_samples) { - gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples)); - - n_samples -= n; - for (i = 0; i < n; i++) { - gint16 old_sample = samples[i] << shift; - - peak_sample = MAX (peak_sample, ABS ((gint32) old_sample)); - conv_samples[i] = (gfloat) old_sample; - } - samples += n; - rg_analysis_analyze (ctx, conv_samples, NULL, n); - } - ctx->track.peak = MAX (ctx->track.peak, - (gdouble) peak_sample / ((gdouble) (1u << 15))); -} - -void -rg_analysis_analyze_stereo_int16 (RgAnalysisCtx * ctx, gconstpointer data, - gsize size, guint depth) -{ - gfloat conv_samples_l[256]; - gfloat conv_samples_r[256]; - gint32 peak_sample = 0; - const gint16 *samples = (gint16 *) data; - guint n_frames = size / (sizeof (gint16) * 2); - gint shift = sizeof (gint16) * 8 - depth; - gint i; - - g_return_if_fail (depth <= (sizeof (gint16) * 8)); - g_return_if_fail (size % (sizeof (gint16) * 2) == 0); - - while (n_frames) { - gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l)); - - n_frames -= n; - for (i = 0; i < n; i++) { - gint16 old_sample; - - old_sample = samples[2 * i] << shift; - peak_sample = MAX (peak_sample, ABS ((gint32) old_sample)); - conv_samples_l[i] = (gfloat) old_sample; - - old_sample = samples[2 * i + 1] << shift; - peak_sample = MAX (peak_sample, ABS ((gint32) old_sample)); - conv_samples_r[i] = (gfloat) old_sample; - } - samples += 2 * n; - rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n); - } - ctx->track.peak = MAX (ctx->track.peak, - (gdouble) peak_sample / ((gdouble) (1u << 15))); -} - -/* Analyze the given chunk of samples. The sample data is given in - * floating point format but should be scaled such that the values - * +/-32768.0 correspond to the -0dBFS reference amplitude. - * - * samples_l: Buffer with sample data for the left channel or of the - * mono channel. - * - * samples_r: Buffer with sample data for the right channel or NULL - * for mono. - * - * n_samples: Number of samples passed in each buffer. - */ - -void -rg_analysis_analyze (RgAnalysisCtx * ctx, const gfloat * samples_l, - const gfloat * samples_r, guint n_samples) -{ - const gfloat *input_l, *input_r; - guint n_samples_done; - gint i; - - g_return_if_fail (ctx != NULL); - g_return_if_fail (samples_l != NULL); - g_return_if_fail (ctx->sample_rate != 0); - - if (n_samples == 0) - return; - - if (samples_r == NULL) - /* Mono. */ - samples_r = samples_l; - - memcpy (ctx->inpre_l, samples_l, - MIN (n_samples, MAX_ORDER) * sizeof (gfloat)); - memcpy (ctx->inpre_r, samples_r, - MIN (n_samples, MAX_ORDER) * sizeof (gfloat)); - - n_samples_done = 0; - while (n_samples_done < n_samples) { - /* Limit number of samples to be processed in this iteration to - * the number needed to complete the next window: */ - guint n_samples_current = MIN (n_samples - n_samples_done, - ctx->window_n_samples - ctx->window_n_samples_done); - - if (n_samples_done < MAX_ORDER) { - input_l = ctx->inpre_l + n_samples_done; - input_r = ctx->inpre_r + n_samples_done; - n_samples_current = MIN (n_samples_current, MAX_ORDER - n_samples_done); - } else { - input_l = samples_l + n_samples_done; - input_r = samples_r + n_samples_done; - } - - apply_filters (ctx, input_l, input_r, n_samples_current); - - /* Update the square sum. */ - for (i = 0; i < n_samples_current; i++) - ctx->window_square_sum += ctx->out_l[ctx->window_n_samples_done + i] - * ctx->out_l[ctx->window_n_samples_done + i] - + ctx->out_r[ctx->window_n_samples_done + i] - * ctx->out_r[ctx->window_n_samples_done + i]; - - ctx->window_n_samples_done += n_samples_current; - - g_return_if_fail (ctx->window_n_samples_done <= ctx->window_n_samples); - - if (ctx->window_n_samples_done == ctx->window_n_samples) { - /* Get the Root Mean Square (RMS) for this set of samples. */ - gdouble val = STEPS_PER_DB * 10. * log10 (ctx->window_square_sum / - ctx->window_n_samples * 0.5 + 1.e-37); - gint ival = CLAMP ((gint) val, 0, - (gint) G_N_ELEMENTS (ctx->track.histogram) - 1); - - ctx->track.histogram[ival]++; - ctx->window_square_sum = 0.; - ctx->window_n_samples_done = 0; - - /* No need for memmove here, the areas never overlap: Even for - * the smallest sample rate, the number of samples needed for - * the window is greater than MAX_ORDER. */ - - memcpy (ctx->stepbuf_l, ctx->stepbuf_l + ctx->window_n_samples, - MAX_ORDER * sizeof (gfloat)); - memcpy (ctx->outbuf_l, ctx->outbuf_l + ctx->window_n_samples, - MAX_ORDER * sizeof (gfloat)); - - memcpy (ctx->stepbuf_r, ctx->stepbuf_r + ctx->window_n_samples, - MAX_ORDER * sizeof (gfloat)); - memcpy (ctx->outbuf_r, ctx->outbuf_r + ctx->window_n_samples, - MAX_ORDER * sizeof (gfloat)); - } - - n_samples_done += n_samples_current; - } - - if (n_samples >= MAX_ORDER) { - - memcpy (ctx->inprebuf_l, samples_l + n_samples - MAX_ORDER, - MAX_ORDER * sizeof (gfloat)); - - memcpy (ctx->inprebuf_r, samples_r + n_samples - MAX_ORDER, - MAX_ORDER * sizeof (gfloat)); - - } else { - - memmove (ctx->inprebuf_l, ctx->inprebuf_l + n_samples, - (MAX_ORDER - n_samples) * sizeof (gfloat)); - memcpy (ctx->inprebuf_l + MAX_ORDER - n_samples, samples_l, - n_samples * sizeof (gfloat)); - - memmove (ctx->inprebuf_r, ctx->inprebuf_r + n_samples, - (MAX_ORDER - n_samples) * sizeof (gfloat)); - memcpy (ctx->inprebuf_r + MAX_ORDER - n_samples, samples_r, - n_samples * sizeof (gfloat)); - - } -} - -/* Obtain track gain and peak. Returns TRUE on success. Can fail if - * not enough samples have been processed. Updates album accumulator. - * Resets track accumulator. */ - -gboolean -rg_analysis_track_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak) -{ - gboolean result; - - g_return_val_if_fail (ctx != NULL, FALSE); - - accumulator_add (&ctx->album, &ctx->track); - result = accumulator_result (&ctx->track, gain, peak); - accumulator_clear (&ctx->track); - - reset_filters (ctx); - - return result; -} - -/* Obtain album gain and peak. Returns TRUE on success. Can fail if - * not enough samples have been processed. Resets album - * accumulator. */ - -gboolean -rg_analysis_album_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak) -{ - gboolean result; - - g_return_val_if_fail (ctx != NULL, FALSE); - - result = accumulator_result (&ctx->album, gain, peak); - accumulator_clear (&ctx->album); - - return result; -} - -void -rg_analysis_reset_album (RgAnalysisCtx * ctx) -{ - accumulator_clear (&ctx->album); -} - -/* Reset internal buffers as well as track and album accumulators. - * Configured sample rate is kept intact. */ - -void -rg_analysis_reset (RgAnalysisCtx * ctx) -{ - g_return_if_fail (ctx != NULL); - - reset_filters (ctx); - accumulator_clear (&ctx->track); - accumulator_clear (&ctx->album); -} |