diff options
Diffstat (limited to 'gst/speexresample/resample.c')
-rw-r--r-- | gst/speexresample/resample.c | 1310 |
1 files changed, 1310 insertions, 0 deletions
diff --git a/gst/speexresample/resample.c b/gst/speexresample/resample.c new file mode 100644 index 00000000..f3c97fdd --- /dev/null +++ b/gst/speexresample/resample.c @@ -0,0 +1,1310 @@ +/* Copyright (C) 2007 Jean-Marc Valin + + File: resample.c + Arbitrary resampling code + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. The name of the author may not be used to endorse or promote products + derived from this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, + INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. +*/ + +/* + The design goals of this code are: + - Very fast algorithm + - SIMD-friendly algorithm + - Low memory requirement + - Good *perceptual* quality (and not best SNR) + + Warning: This resampler is relatively new. Although I think I got rid of + all the major bugs and I don't expect the API to change anymore, there + may be something I've missed. So use with caution. + + This algorithm is based on this original resampling algorithm: + Smith, Julius O. Digital Audio Resampling Home Page + Center for Computer Research in Music and Acoustics (CCRMA), + Stanford University, 2007. + Web published at http://www-ccrma.stanford.edu/~jos/resample/. + + There is one main difference, though. This resampler uses cubic + interpolation instead of linear interpolation in the above paper. This + makes the table much smaller and makes it possible to compute that table + on a per-stream basis. In turn, being able to tweak the table for each + stream makes it possible to both reduce complexity on simple ratios + (e.g. 2/3), and get rid of the rounding operations in the inner loop. + The latter both reduces CPU time and makes the algorithm more SIMD-friendly. +*/ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#ifdef OUTSIDE_SPEEX +#include <stdlib.h> +static void * +speex_alloc (int size) +{ + return calloc (size, 1); +} +static void * +speex_realloc (void *ptr, int size) +{ + return realloc (ptr, size); +} +static void +speex_free (void *ptr) +{ + free (ptr); +} + +#include "speex_resampler.h" +#include "arch.h" +#else /* OUTSIDE_SPEEX */ + +#include "speex/speex_resampler.h" +#include "arch.h" +#include "os_support.h" +#endif /* OUTSIDE_SPEEX */ + +#include <math.h> + +#ifndef M_PI +#define M_PI 3.14159263 +#endif + +#ifdef FIXED_POINT +#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x))) +#else +#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x)))) +#endif + +/*#define float double*/ +#define FILTER_SIZE 64 +#define OVERSAMPLE 8 + +#define IMAX(a,b) ((a) > (b) ? (a) : (b)) +#define IMIN(a,b) ((a) < (b) ? (a) : (b)) + +#ifndef NULL +#define NULL 0 +#endif + +typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t, + const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); + +struct SpeexResamplerState_ +{ + spx_uint32_t in_rate; + spx_uint32_t out_rate; + spx_uint32_t num_rate; + spx_uint32_t den_rate; + + int quality; + spx_uint32_t nb_channels; + spx_uint32_t filt_len; + spx_uint32_t mem_alloc_size; + int int_advance; + int frac_advance; + float cutoff; + spx_uint32_t oversample; + int initialised; + int started; + + /* These are per-channel */ + spx_int32_t *last_sample; + spx_uint32_t *samp_frac_num; + spx_uint32_t *magic_samples; + + spx_word16_t *mem; + spx_word16_t *sinc_table; + spx_uint32_t sinc_table_length; + resampler_basic_func resampler_ptr; + + int in_stride; + int out_stride; +}; + +static double kaiser12_table[68] = { + 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076, + 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014, + 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601, + 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014, + 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490, + 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546, + 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178, + 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947, + 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058, + 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438, + 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734, + 0.00001000, 0.00000000 +}; + +/* +static double kaiser12_table[36] = { + 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741, + 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762, + 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274, + 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466, + 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291, + 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000}; +*/ +static double kaiser10_table[36] = { + 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446, + 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347, + 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962, + 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451, + 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739, + 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000 +}; + +static double kaiser8_table[36] = { + 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200, + 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126, + 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272, + 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758, + 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490, + 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000 +}; + +static double kaiser6_table[36] = { + 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003, + 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565, + 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561, + 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058, + 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600, + 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000 +}; + +struct FuncDef +{ + double *table; + int oversample; +}; + +static struct FuncDef _KAISER12 = { kaiser12_table, 64 }; + +#define KAISER12 (&_KAISER12) +/*static struct FuncDef _KAISER12 = {kaiser12_table, 32}; +#define KAISER12 (&_KAISER12)*/ +static struct FuncDef _KAISER10 = { kaiser10_table, 32 }; + +#define KAISER10 (&_KAISER10) +static struct FuncDef _KAISER8 = { kaiser8_table, 32 }; + +#define KAISER8 (&_KAISER8) +static struct FuncDef _KAISER6 = { kaiser6_table, 32 }; + +#define KAISER6 (&_KAISER6) + +struct QualityMapping +{ + int base_length; + int oversample; + float downsample_bandwidth; + float upsample_bandwidth; + struct FuncDef *window_func; +}; + + +/* This table maps conversion quality to internal parameters. There are two + reasons that explain why the up-sampling bandwidth is larger than the + down-sampling bandwidth: + 1) When up-sampling, we can assume that the spectrum is already attenuated + close to the Nyquist rate (from an A/D or a previous resampling filter) + 2) Any aliasing that occurs very close to the Nyquist rate will be masked + by the sinusoids/noise just below the Nyquist rate (guaranteed only for + up-sampling). +*/ +static const struct QualityMapping quality_map[11] = { + {8, 4, 0.830f, 0.860f, KAISER6}, /* Q0 */ + {16, 4, 0.850f, 0.880f, KAISER6}, /* Q1 */ + {32, 4, 0.882f, 0.910f, KAISER6}, /* Q2 *//* 82.3% cutoff ( ~60 dB stop) 6 */ + {48, 8, 0.895f, 0.917f, KAISER8}, /* Q3 *//* 84.9% cutoff ( ~80 dB stop) 8 */ + {64, 8, 0.921f, 0.940f, KAISER8}, /* Q4 *//* 88.7% cutoff ( ~80 dB stop) 8 */ + {80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 *//* 89.1% cutoff (~100 dB stop) 10 */ + {96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 *//* 91.5% cutoff (~100 dB stop) 10 */ + {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 *//* 93.1% cutoff (~100 dB stop) 10 */ + {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 *//* 94.5% cutoff (~100 dB stop) 10 */ + {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 *//* 95.5% cutoff (~100 dB stop) 10 */ + {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 *//* 96.6% cutoff (~100 dB stop) 10 */ +}; + +/*8,24,40,56,80,104,128,160,200,256,320*/ +static double +compute_func (float x, struct FuncDef *func) +{ + float y, frac; + double interp[4]; + int ind; + + y = x * func->oversample; + ind = (int) floor (y); + frac = (y - ind); + /* CSE with handle the repeated powers */ + interp[3] = -0.1666666667 * frac + 0.1666666667 * (frac * frac * frac); + interp[2] = frac + 0.5 * (frac * frac) - 0.5 * (frac * frac * frac); + /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */ + interp[0] = + -0.3333333333 * frac + 0.5 * (frac * frac) - + 0.1666666667 * (frac * frac * frac); + /* Just to make sure we don't have rounding problems */ + interp[1] = 1.f - interp[3] - interp[2] - interp[0]; + + /*sum = frac*accum[1] + (1-frac)*accum[2]; */ + return interp[0] * func->table[ind] + interp[1] * func->table[ind + 1] + + interp[2] * func->table[ind + 2] + interp[3] * func->table[ind + 3]; +} + +#if 0 +#include <stdio.h> +int +main (int argc, char **argv) +{ + int i; + + for (i = 0; i < 256; i++) { + printf ("%f\n", compute_func (i / 256., KAISER12)); + } + return 0; +} +#endif + +#ifdef FIXED_POINT +/* The slow way of computing a sinc for the table. Should improve that some day */ +static spx_word16_t +sinc (float cutoff, float x, int N, struct FuncDef *window_func) +{ + /*fprintf (stderr, "%f ", x); */ + float xx = x * cutoff; + + if (fabs (x) < 1e-6f) + return WORD2INT (32768. * cutoff); + else if (fabs (x) > .5f * N) + return 0; + /*FIXME: Can it really be any slower than this? */ + return WORD2INT (32768. * cutoff * sin (M_PI * xx) / (M_PI * xx) * + compute_func (fabs (2. * x / N), window_func)); +} +#else +/* The slow way of computing a sinc for the table. Should improve that some day */ +static spx_word16_t +sinc (float cutoff, float x, int N, struct FuncDef *window_func) +{ + /*fprintf (stderr, "%f ", x); */ + float xx = x * cutoff; + + if (fabs (x) < 1e-6) + return cutoff; + else if (fabs (x) > .5 * N) + return 0; + /*FIXME: Can it really be any slower than this? */ + return cutoff * sin (M_PI * xx) / (M_PI * xx) * compute_func (fabs (2. * x / + N), window_func); +} +#endif + +#ifdef FIXED_POINT +static void +cubic_coef (spx_word16_t x, spx_word16_t interp[4]) +{ + /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation + but I know it's MMSE-optimal on a sinc */ + spx_word16_t x2, x3; + + x2 = MULT16_16_P15 (x, x); + x3 = MULT16_16_P15 (x, x2); + interp[0] = + PSHR32 (MULT16_16 (QCONST16 (-0.16667f, 15), + x) + MULT16_16 (QCONST16 (0.16667f, 15), x3), 15); + interp[1] = + EXTRACT16 (EXTEND32 (x) + SHR32 (SUB32 (EXTEND32 (x2), EXTEND32 (x3)), + 1)); + interp[3] = + PSHR32 (MULT16_16 (QCONST16 (-0.33333f, 15), + x) + MULT16_16 (QCONST16 (.5f, 15), + x2) - MULT16_16 (QCONST16 (0.16667f, 15), x3), 15); + /* Just to make sure we don't have rounding problems */ + interp[2] = Q15_ONE - interp[0] - interp[1] - interp[3]; + if (interp[2] < 32767) + interp[2] += 1; +} +#else +static void +cubic_coef (spx_word16_t frac, spx_word16_t interp[4]) +{ + /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation + but I know it's MMSE-optimal on a sinc */ + interp[0] = -0.16667f * frac + 0.16667f * frac * frac * frac; + interp[1] = frac + 0.5f * frac * frac - 0.5f * frac * frac * frac; + /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */ + interp[3] = + -0.33333f * frac + 0.5f * frac * frac - 0.16667f * frac * frac * frac; + /* Just to make sure we don't have rounding problems */ + interp[2] = 1. - interp[0] - interp[1] - interp[3]; +} +#endif + +static int +resampler_basic_direct_single (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, + spx_word16_t * out, spx_uint32_t * out_len) +{ + int N = st->filt_len; + int out_sample = 0; + spx_word16_t *mem; + int last_sample = st->last_sample[channel_index]; + spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + + mem = st->mem + channel_index * st->mem_alloc_size; + while (!(last_sample >= (spx_int32_t) * in_len + || out_sample >= (spx_int32_t) * out_len)) { + int j; + spx_word32_t sum = 0; + + /* We already have all the filter coefficients pre-computed in the table */ + const spx_word16_t *ptr; + + /* Do the memory part */ + for (j = 0; last_sample - N + 1 + j < 0; j++) { + sum += + MULT16_16 (mem[last_sample + j], + st->sinc_table[samp_frac_num * st->filt_len + j]); + } + + /* Do the new part */ + ptr = in + st->in_stride * (last_sample - N + 1 + j); + for (; j < N; j++) { + sum += MULT16_16 (*ptr, st->sinc_table[samp_frac_num * st->filt_len + j]); + ptr += st->in_stride; + } + + *out = PSHR32 (sum, 15); + out += st->out_stride; + out_sample++; + last_sample += st->int_advance; + samp_frac_num += st->frac_advance; + if (samp_frac_num >= st->den_rate) { + samp_frac_num -= st->den_rate; + last_sample++; + } + } + st->last_sample[channel_index] = last_sample; + st->samp_frac_num[channel_index] = samp_frac_num; + return out_sample; +} + +#ifdef FIXED_POINT +#else +/* This is the same as the previous function, except with a double-precision accumulator */ +static int +resampler_basic_direct_double (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, + spx_word16_t * out, spx_uint32_t * out_len) +{ + int N = st->filt_len; + int out_sample = 0; + spx_word16_t *mem; + int last_sample = st->last_sample[channel_index]; + spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + + mem = st->mem + channel_index * st->mem_alloc_size; + while (!(last_sample >= (spx_int32_t) * in_len + || out_sample >= (spx_int32_t) * out_len)) { + int j; + double sum = 0; + + /* We already have all the filter coefficients pre-computed in the table */ + const spx_word16_t *ptr; + + /* Do the memory part */ + for (j = 0; last_sample - N + 1 + j < 0; j++) { + sum += + MULT16_16 (mem[last_sample + j], + (double) st->sinc_table[samp_frac_num * st->filt_len + j]); + } + + /* Do the new part */ + ptr = in + st->in_stride * (last_sample - N + 1 + j); + for (; j < N; j++) { + sum += + MULT16_16 (*ptr, + (double) st->sinc_table[samp_frac_num * st->filt_len + j]); + ptr += st->in_stride; + } + + *out = sum; + out += st->out_stride; + out_sample++; + last_sample += st->int_advance; + samp_frac_num += st->frac_advance; + if (samp_frac_num >= st->den_rate) { + samp_frac_num -= st->den_rate; + last_sample++; + } + } + st->last_sample[channel_index] = last_sample; + st->samp_frac_num[channel_index] = samp_frac_num; + return out_sample; +} +#endif + +static int +resampler_basic_interpolate_single (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, + spx_word16_t * out, spx_uint32_t * out_len) +{ + int N = st->filt_len; + int out_sample = 0; + spx_word16_t *mem; + int last_sample = st->last_sample[channel_index]; + spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + + mem = st->mem + channel_index * st->mem_alloc_size; + while (!(last_sample >= (spx_int32_t) * in_len + || out_sample >= (spx_int32_t) * out_len)) { + int j; + spx_word32_t sum = 0; + + /* We need to interpolate the sinc filter */ + spx_word32_t accum[4] = { 0.f, 0.f, 0.f, 0.f }; + spx_word16_t interp[4]; + const spx_word16_t *ptr; + int offset; + spx_word16_t frac; + + offset = samp_frac_num * st->oversample / st->den_rate; +#ifdef FIXED_POINT + frac = + PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15), + st->den_rate); +#else + frac = + ((float) ((samp_frac_num * st->oversample) % st->den_rate)) / + st->den_rate; +#endif + /* This code is written like this to make it easy to optimise with SIMD. + For most DSPs, it would be best to split the loops in two because most DSPs + have only two accumulators */ + for (j = 0; last_sample - N + 1 + j < 0; j++) { + spx_word16_t curr_mem = mem[last_sample + j]; + + accum[0] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); + accum[1] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); + accum[2] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset]); + accum[3] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); + } + ptr = in + st->in_stride * (last_sample - N + 1 + j); + /* Do the new part */ + for (; j < N; j++) { + spx_word16_t curr_in = *ptr; + + ptr += st->in_stride; + accum[0] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); + accum[1] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); + accum[2] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset]); + accum[3] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); + } + cubic_coef (frac, interp); + sum = + MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1], + accum[1]) + MULT16_32_Q15 (interp[2], + accum[2]) + MULT16_32_Q15 (interp[3], accum[3]); + + *out = PSHR32 (sum, 15); + out += st->out_stride; + out_sample++; + last_sample += st->int_advance; + samp_frac_num += st->frac_advance; + if (samp_frac_num >= st->den_rate) { + samp_frac_num -= st->den_rate; + last_sample++; + } + } + st->last_sample[channel_index] = last_sample; + st->samp_frac_num[channel_index] = samp_frac_num; + return out_sample; +} + +#ifdef FIXED_POINT +#else +/* This is the same as the previous function, except with a double-precision accumulator */ +static int +resampler_basic_interpolate_double (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, + spx_word16_t * out, spx_uint32_t * out_len) +{ + int N = st->filt_len; + int out_sample = 0; + spx_word16_t *mem; + int last_sample = st->last_sample[channel_index]; + spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + + mem = st->mem + channel_index * st->mem_alloc_size; + while (!(last_sample >= (spx_int32_t) * in_len + || out_sample >= (spx_int32_t) * out_len)) { + int j; + spx_word32_t sum = 0; + + /* We need to interpolate the sinc filter */ + double accum[4] = { 0.f, 0.f, 0.f, 0.f }; + float interp[4]; + const spx_word16_t *ptr; + float alpha = ((float) samp_frac_num) / st->den_rate; + int offset = samp_frac_num * st->oversample / st->den_rate; + float frac = alpha * st->oversample - offset; + + /* This code is written like this to make it easy to optimise with SIMD. + For most DSPs, it would be best to split the loops in two because most DSPs + have only two accumulators */ + for (j = 0; last_sample - N + 1 + j < 0; j++) { + double curr_mem = mem[last_sample + j]; + + accum[0] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); + accum[1] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); + accum[2] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset]); + accum[3] += + MULT16_16 (curr_mem, + st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); + } + ptr = in + st->in_stride * (last_sample - N + 1 + j); + /* Do the new part */ + for (; j < N; j++) { + double curr_in = *ptr; + + ptr += st->in_stride; + accum[0] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); + accum[1] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); + accum[2] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset]); + accum[3] += + MULT16_16 (curr_in, + st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); + } + cubic_coef (frac, interp); + sum = + interp[0] * accum[0] + interp[1] * accum[1] + interp[2] * accum[2] + + interp[3] * accum[3]; + + *out = PSHR32 (sum, 15); + out += st->out_stride; + out_sample++; + last_sample += st->int_advance; + samp_frac_num += st->frac_advance; + if (samp_frac_num >= st->den_rate) { + samp_frac_num -= st->den_rate; + last_sample++; + } + } + st->last_sample[channel_index] = last_sample; + st->samp_frac_num[channel_index] = samp_frac_num; + return out_sample; +} +#endif + +static void +update_filter (SpeexResamplerState * st) +{ + spx_uint32_t old_length; + + old_length = st->filt_len; + st->oversample = quality_map[st->quality].oversample; + st->filt_len = quality_map[st->quality].base_length; + + if (st->num_rate > st->den_rate) { + /* down-sampling */ + st->cutoff = + quality_map[st->quality].downsample_bandwidth * st->den_rate / + st->num_rate; + /* FIXME: divide the numerator and denominator by a certain amount if they're too large */ + st->filt_len = st->filt_len * st->num_rate / st->den_rate; + /* Round down to make sure we have a multiple of 4 */ + st->filt_len &= (~0x3); + if (2 * st->den_rate < st->num_rate) + st->oversample >>= 1; + if (4 * st->den_rate < st->num_rate) + st->oversample >>= 1; + if (8 * st->den_rate < st->num_rate) + st->oversample >>= 1; + if (16 * st->den_rate < st->num_rate) + st->oversample >>= 1; + if (st->oversample < 1) + st->oversample = 1; + } else { + /* up-sampling */ + st->cutoff = quality_map[st->quality].upsample_bandwidth; + } + + /* Choose the resampling type that requires the least amount of memory */ + if (st->den_rate <= st->oversample) { + spx_uint32_t i; + + if (!st->sinc_table) + st->sinc_table = + (spx_word16_t *) speex_alloc (st->filt_len * st->den_rate * + sizeof (spx_word16_t)); + else if (st->sinc_table_length < st->filt_len * st->den_rate) { + st->sinc_table = + (spx_word16_t *) speex_realloc (st->sinc_table, + st->filt_len * st->den_rate * sizeof (spx_word16_t)); + st->sinc_table_length = st->filt_len * st->den_rate; + } + for (i = 0; i < st->den_rate; i++) { + spx_int32_t j; + + for (j = 0; j < st->filt_len; j++) { + st->sinc_table[i * st->filt_len + j] = + sinc (st->cutoff, + ((j - (spx_int32_t) st->filt_len / 2 + 1) - + ((float) i) / st->den_rate), st->filt_len, + quality_map[st->quality].window_func); + } + } +#ifdef FIXED_POINT + st->resampler_ptr = resampler_basic_direct_single; +#else + if (st->quality > 8) + st->resampler_ptr = resampler_basic_direct_double; + else + st->resampler_ptr = resampler_basic_direct_single; +#endif + /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */ + } else { + spx_int32_t i; + + if (!st->sinc_table) + st->sinc_table = + (spx_word16_t *) speex_alloc ((st->filt_len * st->oversample + + 8) * sizeof (spx_word16_t)); + else if (st->sinc_table_length < st->filt_len * st->oversample + 8) { + st->sinc_table = + (spx_word16_t *) speex_realloc (st->sinc_table, + (st->filt_len * st->oversample + 8) * sizeof (spx_word16_t)); + st->sinc_table_length = st->filt_len * st->oversample + 8; + } + for (i = -4; i < (spx_int32_t) (st->oversample * st->filt_len + 4); i++) + st->sinc_table[i + 4] = + sinc (st->cutoff, (i / (float) st->oversample - st->filt_len / 2), + st->filt_len, quality_map[st->quality].window_func); +#ifdef FIXED_POINT + st->resampler_ptr = resampler_basic_interpolate_single; +#else + if (st->quality > 8) + st->resampler_ptr = resampler_basic_interpolate_double; + else + st->resampler_ptr = resampler_basic_interpolate_single; +#endif + /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff); */ + } + st->int_advance = st->num_rate / st->den_rate; + st->frac_advance = st->num_rate % st->den_rate; + + + /* Here's the place where we update the filter memory to take into account + the change in filter length. It's probably the messiest part of the code + due to handling of lots of corner cases. */ + if (!st->mem) { + spx_uint32_t i; + + st->mem = + (spx_word16_t *) speex_alloc (st->nb_channels * (st->filt_len - + 1) * sizeof (spx_word16_t)); + for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) + st->mem[i] = 0; + st->mem_alloc_size = st->filt_len - 1; + /*speex_warning("init filter"); */ + } else if (!st->started) { + spx_uint32_t i; + + st->mem = + (spx_word16_t *) speex_realloc (st->mem, + st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t)); + for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) + st->mem[i] = 0; + st->mem_alloc_size = st->filt_len - 1; + /*speex_warning("reinit filter"); */ + } else if (st->filt_len > old_length) { + spx_int32_t i; + + /* Increase the filter length */ + /*speex_warning("increase filter size"); */ + int old_alloc_size = st->mem_alloc_size; + + if (st->filt_len - 1 > st->mem_alloc_size) { + st->mem = + (spx_word16_t *) speex_realloc (st->mem, + st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t)); + st->mem_alloc_size = st->filt_len - 1; + } + for (i = st->nb_channels - 1; i >= 0; i--) { + spx_int32_t j; + spx_uint32_t olen = old_length; + + /*if (st->magic_samples[i]) */ + { + /* Try and remove the magic samples as if nothing had happened */ + + /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */ + olen = old_length + 2 * st->magic_samples[i]; + for (j = old_length - 2 + st->magic_samples[i]; j >= 0; j--) + st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]] = + st->mem[i * old_alloc_size + j]; + for (j = 0; j < st->magic_samples[i]; j++) + st->mem[i * st->mem_alloc_size + j] = 0; + st->magic_samples[i] = 0; + } + if (st->filt_len > olen) { + /* If the new filter length is still bigger than the "augmented" length */ + /* Copy data going backward */ + for (j = 0; j < olen - 1; j++) + st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = + st->mem[i * st->mem_alloc_size + (olen - 2 - j)]; + /* Then put zeros for lack of anything better */ + for (; j < st->filt_len - 1; j++) + st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = 0; + /* Adjust last_sample */ + st->last_sample[i] += (st->filt_len - olen) / 2; + } else { + /* Put back some of the magic! */ + st->magic_samples[i] = (olen - st->filt_len) / 2; + for (j = 0; j < st->filt_len - 1 + st->magic_samples[i]; j++) + st->mem[i * st->mem_alloc_size + j] = + st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]]; + } + } + } else if (st->filt_len < old_length) { + spx_uint32_t i; + + /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic" + samples so they can be used directly as input the next time(s) */ + for (i = 0; i < st->nb_channels; i++) { + spx_uint32_t j; + spx_uint32_t old_magic = st->magic_samples[i]; + + st->magic_samples[i] = (old_length - st->filt_len) / 2; + /* We must copy some of the memory that's no longer used */ + /* Copy data going backward */ + for (j = 0; j < st->filt_len - 1 + st->magic_samples[i] + old_magic; j++) + st->mem[i * st->mem_alloc_size + j] = + st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]]; + st->magic_samples[i] += old_magic; + } + } + +} + +SpeexResamplerState * +speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate, + spx_uint32_t out_rate, int quality, int *err) +{ + return speex_resampler_init_frac (nb_channels, in_rate, out_rate, in_rate, + out_rate, quality, err); +} + +SpeexResamplerState * +speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num, + spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, + int quality, int *err) +{ + spx_uint32_t i; + SpeexResamplerState *st; + + if (quality > 10 || quality < 0) { + if (err) + *err = RESAMPLER_ERR_INVALID_ARG; + return NULL; + } + st = (SpeexResamplerState *) speex_alloc (sizeof (SpeexResamplerState)); + st->initialised = 0; + st->started = 0; + st->in_rate = 0; + st->out_rate = 0; + st->num_rate = 0; + st->den_rate = 0; + st->quality = -1; + st->sinc_table_length = 0; + st->mem_alloc_size = 0; + st->filt_len = 0; + st->mem = 0; + st->resampler_ptr = 0; + + st->cutoff = 1.f; + st->nb_channels = nb_channels; + st->in_stride = 1; + st->out_stride = 1; + + /* Per channel data */ + st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int)); + st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int)); + st->samp_frac_num = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int)); + for (i = 0; i < nb_channels; i++) { + st->last_sample[i] = 0; + st->magic_samples[i] = 0; + st->samp_frac_num[i] = 0; + } + + speex_resampler_set_quality (st, quality); + speex_resampler_set_rate_frac (st, ratio_num, ratio_den, in_rate, out_rate); + + + update_filter (st); + + st->initialised = 1; + if (err) + *err = RESAMPLER_ERR_SUCCESS; + + return st; +} + +void +speex_resampler_destroy (SpeexResamplerState * st) +{ + speex_free (st->mem); + speex_free (st->sinc_table); + speex_free (st->last_sample); + speex_free (st->magic_samples); + speex_free (st->samp_frac_num); + speex_free (st); +} + + + +static int +speex_resampler_process_native (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, + spx_word16_t * out, spx_uint32_t * out_len) +{ + int j = 0; + int N = st->filt_len; + int out_sample = 0; + spx_word16_t *mem; + spx_uint32_t tmp_out_len = 0; + + mem = st->mem + channel_index * st->mem_alloc_size; + st->started = 1; + + /* Handle the case where we have samples left from a reduction in filter length */ + if (st->magic_samples[channel_index]) { + int istride_save; + spx_uint32_t tmp_in_len; + spx_uint32_t tmp_magic; + + istride_save = st->in_stride; + tmp_in_len = st->magic_samples[channel_index]; + tmp_out_len = *out_len; + /* magic_samples needs to be set to zero to avoid infinite recursion */ + tmp_magic = st->magic_samples[channel_index]; + st->magic_samples[channel_index] = 0; + st->in_stride = 1; + speex_resampler_process_native (st, channel_index, mem + N - 1, &tmp_in_len, + out, &tmp_out_len); + st->in_stride = istride_save; + /*speex_warning_int("extra samples:", tmp_out_len); */ + /* If we couldn't process all "magic" input samples, save the rest for next time */ + if (tmp_in_len < tmp_magic) { + spx_uint32_t i; + + st->magic_samples[channel_index] = tmp_magic - tmp_in_len; + for (i = 0; i < st->magic_samples[channel_index]; i++) + mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len]; + } + out += tmp_out_len * st->out_stride; + *out_len -= tmp_out_len; + } + + /* Call the right resampler through the function ptr */ + out_sample = st->resampler_ptr (st, channel_index, in, in_len, out, out_len); + + if (st->last_sample[channel_index] < (spx_int32_t) * in_len) + *in_len = st->last_sample[channel_index]; + *out_len = out_sample + tmp_out_len; + st->last_sample[channel_index] -= *in_len; + + for (j = 0; j < N - 1 - (spx_int32_t) * in_len; j++) + mem[j] = mem[j + *in_len]; + for (; j < N - 1; j++) + mem[j] = in[st->in_stride * (j + *in_len - N + 1)]; + + return RESAMPLER_ERR_SUCCESS; +} + +#define FIXED_STACK_ALLOC 1024 + +#ifdef FIXED_POINT +int +speex_resampler_process_float (SpeexResamplerState * st, + spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, + float *out, spx_uint32_t * out_len) +{ + spx_uint32_t i; + int istride_save, ostride_save; + +#ifdef VAR_ARRAYS + spx_word16_t x[*in_len]; + spx_word16_t y[*out_len]; + + /*VARDECL(spx_word16_t *x); + VARDECL(spx_word16_t *y); + ALLOC(x, *in_len, spx_word16_t); + ALLOC(y, *out_len, spx_word16_t); */ + istride_save = st->in_stride; + ostride_save = st->out_stride; + for (i = 0; i < *in_len; i++) + x[i] = WORD2INT (in[i * st->in_stride]); + st->in_stride = st->out_stride = 1; + speex_resampler_process_native (st, channel_index, x, in_len, y, out_len); + st->in_stride = istride_save; + st->out_stride = ostride_save; + for (i = 0; i < *out_len; i++) + out[i * st->out_stride] = y[i]; +#else + spx_word16_t x[FIXED_STACK_ALLOC]; + spx_word16_t y[FIXED_STACK_ALLOC]; + spx_uint32_t ilen = *in_len, olen = *out_len; + + istride_save = st->in_stride; + ostride_save = st->out_stride; + while (ilen && olen) { + spx_uint32_t ichunk, ochunk; + + ichunk = ilen; + ochunk = olen; + if (ichunk > FIXED_STACK_ALLOC) + ichunk = FIXED_STACK_ALLOC; + if (ochunk > FIXED_STACK_ALLOC) + ochunk = FIXED_STACK_ALLOC; + for (i = 0; i < ichunk; i++) + x[i] = WORD2INT (in[i * st->in_stride]); + st->in_stride = st->out_stride = 1; + speex_resampler_process_native (st, channel_index, x, &ichunk, y, &ochunk); + st->in_stride = istride_save; + st->out_stride = ostride_save; + for (i = 0; i < ochunk; i++) + out[i * st->out_stride] = y[i]; + out += ochunk; + in += ichunk; + ilen -= ichunk; + olen -= ochunk; + } + *in_len -= ilen; + *out_len -= olen; +#endif + return RESAMPLER_ERR_SUCCESS; +} + +int +speex_resampler_process_int (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len, + spx_int16_t * out, spx_uint32_t * out_len) +{ + return speex_resampler_process_native (st, channel_index, in, in_len, out, + out_len); +} +#else +int +speex_resampler_process_float (SpeexResamplerState * st, + spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, + float *out, spx_uint32_t * out_len) +{ + return speex_resampler_process_native (st, channel_index, in, in_len, out, + out_len); +} + +int +speex_resampler_process_int (SpeexResamplerState * st, + spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len, + spx_int16_t * out, spx_uint32_t * out_len) +{ + spx_uint32_t i; + int istride_save, ostride_save; + +#ifdef VAR_ARRAYS + spx_word16_t x[*in_len]; + spx_word16_t y[*out_len]; + + /*VARDECL(spx_word16_t *x); + VARDECL(spx_word16_t *y); + ALLOC(x, *in_len, spx_word16_t); + ALLOC(y, *out_len, spx_word16_t); */ + istride_save = st->in_stride; + ostride_save = st->out_stride; + for (i = 0; i < *in_len; i++) + x[i] = in[i * st->in_stride]; + st->in_stride = st->out_stride = 1; + speex_resampler_process_native (st, channel_index, x, in_len, y, out_len); + st->in_stride = istride_save; + st->out_stride = ostride_save; + for (i = 0; i < *out_len; i++) + out[i * st->out_stride] = WORD2INT (y[i]); +#else + spx_word16_t x[FIXED_STACK_ALLOC]; + spx_word16_t y[FIXED_STACK_ALLOC]; + spx_uint32_t ilen = *in_len, olen = *out_len; + + istride_save = st->in_stride; + ostride_save = st->out_stride; + while (ilen && olen) { + spx_uint32_t ichunk, ochunk; + + ichunk = ilen; + ochunk = olen; + if (ichunk > FIXED_STACK_ALLOC) + ichunk = FIXED_STACK_ALLOC; + if (ochunk > FIXED_STACK_ALLOC) + ochunk = FIXED_STACK_ALLOC; + for (i = 0; i < ichunk; i++) + x[i] = in[i * st->in_stride]; + st->in_stride = st->out_stride = 1; + speex_resampler_process_native (st, channel_index, x, &ichunk, y, &ochunk); + st->in_stride = istride_save; + st->out_stride = ostride_save; + for (i = 0; i < ochunk; i++) + out[i * st->out_stride] = WORD2INT (y[i]); + out += ochunk; + in += ichunk; + ilen -= ichunk; + olen -= ochunk; + } + *in_len -= ilen; + *out_len -= olen; +#endif + return RESAMPLER_ERR_SUCCESS; +} +#endif + +int +speex_resampler_process_interleaved_float (SpeexResamplerState * st, + const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len) +{ + spx_uint32_t i; + int istride_save, ostride_save; + spx_uint32_t bak_len = *out_len; + + istride_save = st->in_stride; + ostride_save = st->out_stride; + st->in_stride = st->out_stride = st->nb_channels; + for (i = 0; i < st->nb_channels; i++) { + *out_len = bak_len; + speex_resampler_process_float (st, i, in + i, in_len, out + i, out_len); + } + st->in_stride = istride_save; + st->out_stride = ostride_save; + return RESAMPLER_ERR_SUCCESS; +} + + +int +speex_resampler_process_interleaved_int (SpeexResamplerState * st, + const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out, + spx_uint32_t * out_len) +{ + spx_uint32_t i; + int istride_save, ostride_save; + spx_uint32_t bak_len = *out_len; + + istride_save = st->in_stride; + ostride_save = st->out_stride; + st->in_stride = st->out_stride = st->nb_channels; + for (i = 0; i < st->nb_channels; i++) { + *out_len = bak_len; + speex_resampler_process_int (st, i, in + i, in_len, out + i, out_len); + } + st->in_stride = istride_save; + st->out_stride = ostride_save; + return RESAMPLER_ERR_SUCCESS; +} + +int +speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate, + spx_uint32_t out_rate) +{ + return speex_resampler_set_rate_frac (st, in_rate, out_rate, in_rate, + out_rate); +} + +void +speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate, + spx_uint32_t * out_rate) +{ + *in_rate = st->in_rate; + *out_rate = st->out_rate; +} + +int +speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num, + spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate) +{ + spx_uint32_t fact; + spx_uint32_t old_den; + spx_uint32_t i; + + if (st->in_rate == in_rate && st->out_rate == out_rate + && st->num_rate == ratio_num && st->den_rate == ratio_den) + return RESAMPLER_ERR_SUCCESS; + + old_den = st->den_rate; + st->in_rate = in_rate; + st->out_rate = out_rate; + st->num_rate = ratio_num; + st->den_rate = ratio_den; + /* FIXME: This is terribly inefficient, but who cares (at least for now)? */ + for (fact = 2; fact <= IMIN (st->num_rate, st->den_rate); fact++) { + while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0)) { + st->num_rate /= fact; + st->den_rate /= fact; + } + } + + if (old_den > 0) { + for (i = 0; i < st->nb_channels; i++) { + st->samp_frac_num[i] = st->samp_frac_num[i] * st->den_rate / old_den; + /* Safety net */ + if (st->samp_frac_num[i] >= st->den_rate) + st->samp_frac_num[i] = st->den_rate - 1; + } + } + + if (st->initialised) + update_filter (st); + return RESAMPLER_ERR_SUCCESS; +} + +void +speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num, + spx_uint32_t * ratio_den) +{ + *ratio_num = st->num_rate; + *ratio_den = st->den_rate; +} + +int +speex_resampler_set_quality (SpeexResamplerState * st, int quality) +{ + if (quality > 10 || quality < 0) + return RESAMPLER_ERR_INVALID_ARG; + if (st->quality == quality) + return RESAMPLER_ERR_SUCCESS; + st->quality = quality; + if (st->initialised) + update_filter (st); + return RESAMPLER_ERR_SUCCESS; +} + +void +speex_resampler_get_quality (SpeexResamplerState * st, int *quality) +{ + *quality = st->quality; +} + +void +speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride) +{ + st->in_stride = stride; +} + +void +speex_resampler_get_input_stride (SpeexResamplerState * st, + spx_uint32_t * stride) +{ + *stride = st->in_stride; +} + +void +speex_resampler_set_output_stride (SpeexResamplerState * st, + spx_uint32_t stride) +{ + st->out_stride = stride; +} + +void +speex_resampler_get_output_stride (SpeexResamplerState * st, + spx_uint32_t * stride) +{ + *stride = st->out_stride; +} + +int +speex_resampler_skip_zeros (SpeexResamplerState * st) +{ + spx_uint32_t i; + + for (i = 0; i < st->nb_channels; i++) + st->last_sample[i] = st->filt_len / 2; + return RESAMPLER_ERR_SUCCESS; +} + +int +speex_resampler_reset_mem (SpeexResamplerState * st) +{ + spx_uint32_t i; + + for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) + st->mem[i] = 0; + return RESAMPLER_ERR_SUCCESS; +} + +const char * +speex_resampler_strerror (int err) +{ + switch (err) { + case RESAMPLER_ERR_SUCCESS: + return "Success."; + case RESAMPLER_ERR_ALLOC_FAILED: + return "Memory allocation failed."; + case RESAMPLER_ERR_BAD_STATE: + return "Bad resampler state."; + case RESAMPLER_ERR_INVALID_ARG: + return "Invalid argument."; + case RESAMPLER_ERR_PTR_OVERLAP: + return "Input and output buffers overlap."; + default: + return "Unknown error. Bad error code or strange version mismatch."; + } +} |