summaryrefslogtreecommitdiffstats
path: root/gst/speexresample/resample.c
diff options
context:
space:
mode:
Diffstat (limited to 'gst/speexresample/resample.c')
-rw-r--r--gst/speexresample/resample.c1310
1 files changed, 1310 insertions, 0 deletions
diff --git a/gst/speexresample/resample.c b/gst/speexresample/resample.c
new file mode 100644
index 00000000..f3c97fdd
--- /dev/null
+++ b/gst/speexresample/resample.c
@@ -0,0 +1,1310 @@
+/* Copyright (C) 2007 Jean-Marc Valin
+
+ File: resample.c
+ Arbitrary resampling code
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The name of the author may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+*/
+
+/*
+ The design goals of this code are:
+ - Very fast algorithm
+ - SIMD-friendly algorithm
+ - Low memory requirement
+ - Good *perceptual* quality (and not best SNR)
+
+ Warning: This resampler is relatively new. Although I think I got rid of
+ all the major bugs and I don't expect the API to change anymore, there
+ may be something I've missed. So use with caution.
+
+ This algorithm is based on this original resampling algorithm:
+ Smith, Julius O. Digital Audio Resampling Home Page
+ Center for Computer Research in Music and Acoustics (CCRMA),
+ Stanford University, 2007.
+ Web published at http://www-ccrma.stanford.edu/~jos/resample/.
+
+ There is one main difference, though. This resampler uses cubic
+ interpolation instead of linear interpolation in the above paper. This
+ makes the table much smaller and makes it possible to compute that table
+ on a per-stream basis. In turn, being able to tweak the table for each
+ stream makes it possible to both reduce complexity on simple ratios
+ (e.g. 2/3), and get rid of the rounding operations in the inner loop.
+ The latter both reduces CPU time and makes the algorithm more SIMD-friendly.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#ifdef OUTSIDE_SPEEX
+#include <stdlib.h>
+static void *
+speex_alloc (int size)
+{
+ return calloc (size, 1);
+}
+static void *
+speex_realloc (void *ptr, int size)
+{
+ return realloc (ptr, size);
+}
+static void
+speex_free (void *ptr)
+{
+ free (ptr);
+}
+
+#include "speex_resampler.h"
+#include "arch.h"
+#else /* OUTSIDE_SPEEX */
+
+#include "speex/speex_resampler.h"
+#include "arch.h"
+#include "os_support.h"
+#endif /* OUTSIDE_SPEEX */
+
+#include <math.h>
+
+#ifndef M_PI
+#define M_PI 3.14159263
+#endif
+
+#ifdef FIXED_POINT
+#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
+#else
+#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
+#endif
+
+/*#define float double*/
+#define FILTER_SIZE 64
+#define OVERSAMPLE 8
+
+#define IMAX(a,b) ((a) > (b) ? (a) : (b))
+#define IMIN(a,b) ((a) < (b) ? (a) : (b))
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t,
+ const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
+
+struct SpeexResamplerState_
+{
+ spx_uint32_t in_rate;
+ spx_uint32_t out_rate;
+ spx_uint32_t num_rate;
+ spx_uint32_t den_rate;
+
+ int quality;
+ spx_uint32_t nb_channels;
+ spx_uint32_t filt_len;
+ spx_uint32_t mem_alloc_size;
+ int int_advance;
+ int frac_advance;
+ float cutoff;
+ spx_uint32_t oversample;
+ int initialised;
+ int started;
+
+ /* These are per-channel */
+ spx_int32_t *last_sample;
+ spx_uint32_t *samp_frac_num;
+ spx_uint32_t *magic_samples;
+
+ spx_word16_t *mem;
+ spx_word16_t *sinc_table;
+ spx_uint32_t sinc_table_length;
+ resampler_basic_func resampler_ptr;
+
+ int in_stride;
+ int out_stride;
+};
+
+static double kaiser12_table[68] = {
+ 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
+ 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
+ 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
+ 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
+ 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
+ 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
+ 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
+ 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
+ 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
+ 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
+ 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734,
+ 0.00001000, 0.00000000
+};
+
+/*
+static double kaiser12_table[36] = {
+ 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
+ 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
+ 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
+ 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
+ 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
+ 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000};
+*/
+static double kaiser10_table[36] = {
+ 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
+ 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
+ 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
+ 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
+ 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
+ 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000
+};
+
+static double kaiser8_table[36] = {
+ 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
+ 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
+ 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
+ 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
+ 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
+ 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000
+};
+
+static double kaiser6_table[36] = {
+ 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
+ 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
+ 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
+ 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
+ 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
+ 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000
+};
+
+struct FuncDef
+{
+ double *table;
+ int oversample;
+};
+
+static struct FuncDef _KAISER12 = { kaiser12_table, 64 };
+
+#define KAISER12 (&_KAISER12)
+/*static struct FuncDef _KAISER12 = {kaiser12_table, 32};
+#define KAISER12 (&_KAISER12)*/
+static struct FuncDef _KAISER10 = { kaiser10_table, 32 };
+
+#define KAISER10 (&_KAISER10)
+static struct FuncDef _KAISER8 = { kaiser8_table, 32 };
+
+#define KAISER8 (&_KAISER8)
+static struct FuncDef _KAISER6 = { kaiser6_table, 32 };
+
+#define KAISER6 (&_KAISER6)
+
+struct QualityMapping
+{
+ int base_length;
+ int oversample;
+ float downsample_bandwidth;
+ float upsample_bandwidth;
+ struct FuncDef *window_func;
+};
+
+
+/* This table maps conversion quality to internal parameters. There are two
+ reasons that explain why the up-sampling bandwidth is larger than the
+ down-sampling bandwidth:
+ 1) When up-sampling, we can assume that the spectrum is already attenuated
+ close to the Nyquist rate (from an A/D or a previous resampling filter)
+ 2) Any aliasing that occurs very close to the Nyquist rate will be masked
+ by the sinusoids/noise just below the Nyquist rate (guaranteed only for
+ up-sampling).
+*/
+static const struct QualityMapping quality_map[11] = {
+ {8, 4, 0.830f, 0.860f, KAISER6}, /* Q0 */
+ {16, 4, 0.850f, 0.880f, KAISER6}, /* Q1 */
+ {32, 4, 0.882f, 0.910f, KAISER6}, /* Q2 *//* 82.3% cutoff ( ~60 dB stop) 6 */
+ {48, 8, 0.895f, 0.917f, KAISER8}, /* Q3 *//* 84.9% cutoff ( ~80 dB stop) 8 */
+ {64, 8, 0.921f, 0.940f, KAISER8}, /* Q4 *//* 88.7% cutoff ( ~80 dB stop) 8 */
+ {80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 *//* 89.1% cutoff (~100 dB stop) 10 */
+ {96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 *//* 91.5% cutoff (~100 dB stop) 10 */
+ {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 *//* 93.1% cutoff (~100 dB stop) 10 */
+ {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 *//* 94.5% cutoff (~100 dB stop) 10 */
+ {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 *//* 95.5% cutoff (~100 dB stop) 10 */
+ {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 *//* 96.6% cutoff (~100 dB stop) 10 */
+};
+
+/*8,24,40,56,80,104,128,160,200,256,320*/
+static double
+compute_func (float x, struct FuncDef *func)
+{
+ float y, frac;
+ double interp[4];
+ int ind;
+
+ y = x * func->oversample;
+ ind = (int) floor (y);
+ frac = (y - ind);
+ /* CSE with handle the repeated powers */
+ interp[3] = -0.1666666667 * frac + 0.1666666667 * (frac * frac * frac);
+ interp[2] = frac + 0.5 * (frac * frac) - 0.5 * (frac * frac * frac);
+ /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */
+ interp[0] =
+ -0.3333333333 * frac + 0.5 * (frac * frac) -
+ 0.1666666667 * (frac * frac * frac);
+ /* Just to make sure we don't have rounding problems */
+ interp[1] = 1.f - interp[3] - interp[2] - interp[0];
+
+ /*sum = frac*accum[1] + (1-frac)*accum[2]; */
+ return interp[0] * func->table[ind] + interp[1] * func->table[ind + 1] +
+ interp[2] * func->table[ind + 2] + interp[3] * func->table[ind + 3];
+}
+
+#if 0
+#include <stdio.h>
+int
+main (int argc, char **argv)
+{
+ int i;
+
+ for (i = 0; i < 256; i++) {
+ printf ("%f\n", compute_func (i / 256., KAISER12));
+ }
+ return 0;
+}
+#endif
+
+#ifdef FIXED_POINT
+/* The slow way of computing a sinc for the table. Should improve that some day */
+static spx_word16_t
+sinc (float cutoff, float x, int N, struct FuncDef *window_func)
+{
+ /*fprintf (stderr, "%f ", x); */
+ float xx = x * cutoff;
+
+ if (fabs (x) < 1e-6f)
+ return WORD2INT (32768. * cutoff);
+ else if (fabs (x) > .5f * N)
+ return 0;
+ /*FIXME: Can it really be any slower than this? */
+ return WORD2INT (32768. * cutoff * sin (M_PI * xx) / (M_PI * xx) *
+ compute_func (fabs (2. * x / N), window_func));
+}
+#else
+/* The slow way of computing a sinc for the table. Should improve that some day */
+static spx_word16_t
+sinc (float cutoff, float x, int N, struct FuncDef *window_func)
+{
+ /*fprintf (stderr, "%f ", x); */
+ float xx = x * cutoff;
+
+ if (fabs (x) < 1e-6)
+ return cutoff;
+ else if (fabs (x) > .5 * N)
+ return 0;
+ /*FIXME: Can it really be any slower than this? */
+ return cutoff * sin (M_PI * xx) / (M_PI * xx) * compute_func (fabs (2. * x /
+ N), window_func);
+}
+#endif
+
+#ifdef FIXED_POINT
+static void
+cubic_coef (spx_word16_t x, spx_word16_t interp[4])
+{
+ /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
+ but I know it's MMSE-optimal on a sinc */
+ spx_word16_t x2, x3;
+
+ x2 = MULT16_16_P15 (x, x);
+ x3 = MULT16_16_P15 (x, x2);
+ interp[0] =
+ PSHR32 (MULT16_16 (QCONST16 (-0.16667f, 15),
+ x) + MULT16_16 (QCONST16 (0.16667f, 15), x3), 15);
+ interp[1] =
+ EXTRACT16 (EXTEND32 (x) + SHR32 (SUB32 (EXTEND32 (x2), EXTEND32 (x3)),
+ 1));
+ interp[3] =
+ PSHR32 (MULT16_16 (QCONST16 (-0.33333f, 15),
+ x) + MULT16_16 (QCONST16 (.5f, 15),
+ x2) - MULT16_16 (QCONST16 (0.16667f, 15), x3), 15);
+ /* Just to make sure we don't have rounding problems */
+ interp[2] = Q15_ONE - interp[0] - interp[1] - interp[3];
+ if (interp[2] < 32767)
+ interp[2] += 1;
+}
+#else
+static void
+cubic_coef (spx_word16_t frac, spx_word16_t interp[4])
+{
+ /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
+ but I know it's MMSE-optimal on a sinc */
+ interp[0] = -0.16667f * frac + 0.16667f * frac * frac * frac;
+ interp[1] = frac + 0.5f * frac * frac - 0.5f * frac * frac * frac;
+ /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac; */
+ interp[3] =
+ -0.33333f * frac + 0.5f * frac * frac - 0.16667f * frac * frac * frac;
+ /* Just to make sure we don't have rounding problems */
+ interp[2] = 1. - interp[0] - interp[1] - interp[3];
+}
+#endif
+
+static int
+resampler_basic_direct_single (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
+ spx_word16_t * out, spx_uint32_t * out_len)
+{
+ int N = st->filt_len;
+ int out_sample = 0;
+ spx_word16_t *mem;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+
+ mem = st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >= (spx_int32_t) * in_len
+ || out_sample >= (spx_int32_t) * out_len)) {
+ int j;
+ spx_word32_t sum = 0;
+
+ /* We already have all the filter coefficients pre-computed in the table */
+ const spx_word16_t *ptr;
+
+ /* Do the memory part */
+ for (j = 0; last_sample - N + 1 + j < 0; j++) {
+ sum +=
+ MULT16_16 (mem[last_sample + j],
+ st->sinc_table[samp_frac_num * st->filt_len + j]);
+ }
+
+ /* Do the new part */
+ ptr = in + st->in_stride * (last_sample - N + 1 + j);
+ for (; j < N; j++) {
+ sum += MULT16_16 (*ptr, st->sinc_table[samp_frac_num * st->filt_len + j]);
+ ptr += st->in_stride;
+ }
+
+ *out = PSHR32 (sum, 15);
+ out += st->out_stride;
+ out_sample++;
+ last_sample += st->int_advance;
+ samp_frac_num += st->frac_advance;
+ if (samp_frac_num >= st->den_rate) {
+ samp_frac_num -= st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+
+#ifdef FIXED_POINT
+#else
+/* This is the same as the previous function, except with a double-precision accumulator */
+static int
+resampler_basic_direct_double (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
+ spx_word16_t * out, spx_uint32_t * out_len)
+{
+ int N = st->filt_len;
+ int out_sample = 0;
+ spx_word16_t *mem;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+
+ mem = st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >= (spx_int32_t) * in_len
+ || out_sample >= (spx_int32_t) * out_len)) {
+ int j;
+ double sum = 0;
+
+ /* We already have all the filter coefficients pre-computed in the table */
+ const spx_word16_t *ptr;
+
+ /* Do the memory part */
+ for (j = 0; last_sample - N + 1 + j < 0; j++) {
+ sum +=
+ MULT16_16 (mem[last_sample + j],
+ (double) st->sinc_table[samp_frac_num * st->filt_len + j]);
+ }
+
+ /* Do the new part */
+ ptr = in + st->in_stride * (last_sample - N + 1 + j);
+ for (; j < N; j++) {
+ sum +=
+ MULT16_16 (*ptr,
+ (double) st->sinc_table[samp_frac_num * st->filt_len + j]);
+ ptr += st->in_stride;
+ }
+
+ *out = sum;
+ out += st->out_stride;
+ out_sample++;
+ last_sample += st->int_advance;
+ samp_frac_num += st->frac_advance;
+ if (samp_frac_num >= st->den_rate) {
+ samp_frac_num -= st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+#endif
+
+static int
+resampler_basic_interpolate_single (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
+ spx_word16_t * out, spx_uint32_t * out_len)
+{
+ int N = st->filt_len;
+ int out_sample = 0;
+ spx_word16_t *mem;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+
+ mem = st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >= (spx_int32_t) * in_len
+ || out_sample >= (spx_int32_t) * out_len)) {
+ int j;
+ spx_word32_t sum = 0;
+
+ /* We need to interpolate the sinc filter */
+ spx_word32_t accum[4] = { 0.f, 0.f, 0.f, 0.f };
+ spx_word16_t interp[4];
+ const spx_word16_t *ptr;
+ int offset;
+ spx_word16_t frac;
+
+ offset = samp_frac_num * st->oversample / st->den_rate;
+#ifdef FIXED_POINT
+ frac =
+ PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15),
+ st->den_rate);
+#else
+ frac =
+ ((float) ((samp_frac_num * st->oversample) % st->den_rate)) /
+ st->den_rate;
+#endif
+ /* This code is written like this to make it easy to optimise with SIMD.
+ For most DSPs, it would be best to split the loops in two because most DSPs
+ have only two accumulators */
+ for (j = 0; last_sample - N + 1 + j < 0; j++) {
+ spx_word16_t curr_mem = mem[last_sample + j];
+
+ accum[0] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
+ accum[1] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
+ accum[2] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset]);
+ accum[3] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
+ }
+ ptr = in + st->in_stride * (last_sample - N + 1 + j);
+ /* Do the new part */
+ for (; j < N; j++) {
+ spx_word16_t curr_in = *ptr;
+
+ ptr += st->in_stride;
+ accum[0] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
+ accum[1] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
+ accum[2] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset]);
+ accum[3] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
+ }
+ cubic_coef (frac, interp);
+ sum =
+ MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1],
+ accum[1]) + MULT16_32_Q15 (interp[2],
+ accum[2]) + MULT16_32_Q15 (interp[3], accum[3]);
+
+ *out = PSHR32 (sum, 15);
+ out += st->out_stride;
+ out_sample++;
+ last_sample += st->int_advance;
+ samp_frac_num += st->frac_advance;
+ if (samp_frac_num >= st->den_rate) {
+ samp_frac_num -= st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+
+#ifdef FIXED_POINT
+#else
+/* This is the same as the previous function, except with a double-precision accumulator */
+static int
+resampler_basic_interpolate_double (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
+ spx_word16_t * out, spx_uint32_t * out_len)
+{
+ int N = st->filt_len;
+ int out_sample = 0;
+ spx_word16_t *mem;
+ int last_sample = st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index];
+
+ mem = st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >= (spx_int32_t) * in_len
+ || out_sample >= (spx_int32_t) * out_len)) {
+ int j;
+ spx_word32_t sum = 0;
+
+ /* We need to interpolate the sinc filter */
+ double accum[4] = { 0.f, 0.f, 0.f, 0.f };
+ float interp[4];
+ const spx_word16_t *ptr;
+ float alpha = ((float) samp_frac_num) / st->den_rate;
+ int offset = samp_frac_num * st->oversample / st->den_rate;
+ float frac = alpha * st->oversample - offset;
+
+ /* This code is written like this to make it easy to optimise with SIMD.
+ For most DSPs, it would be best to split the loops in two because most DSPs
+ have only two accumulators */
+ for (j = 0; last_sample - N + 1 + j < 0; j++) {
+ double curr_mem = mem[last_sample + j];
+
+ accum[0] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
+ accum[1] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
+ accum[2] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset]);
+ accum[3] +=
+ MULT16_16 (curr_mem,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
+ }
+ ptr = in + st->in_stride * (last_sample - N + 1 + j);
+ /* Do the new part */
+ for (; j < N; j++) {
+ double curr_in = *ptr;
+
+ ptr += st->in_stride;
+ accum[0] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]);
+ accum[1] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]);
+ accum[2] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset]);
+ accum[3] +=
+ MULT16_16 (curr_in,
+ st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]);
+ }
+ cubic_coef (frac, interp);
+ sum =
+ interp[0] * accum[0] + interp[1] * accum[1] + interp[2] * accum[2] +
+ interp[3] * accum[3];
+
+ *out = PSHR32 (sum, 15);
+ out += st->out_stride;
+ out_sample++;
+ last_sample += st->int_advance;
+ samp_frac_num += st->frac_advance;
+ if (samp_frac_num >= st->den_rate) {
+ samp_frac_num -= st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] = last_sample;
+ st->samp_frac_num[channel_index] = samp_frac_num;
+ return out_sample;
+}
+#endif
+
+static void
+update_filter (SpeexResamplerState * st)
+{
+ spx_uint32_t old_length;
+
+ old_length = st->filt_len;
+ st->oversample = quality_map[st->quality].oversample;
+ st->filt_len = quality_map[st->quality].base_length;
+
+ if (st->num_rate > st->den_rate) {
+ /* down-sampling */
+ st->cutoff =
+ quality_map[st->quality].downsample_bandwidth * st->den_rate /
+ st->num_rate;
+ /* FIXME: divide the numerator and denominator by a certain amount if they're too large */
+ st->filt_len = st->filt_len * st->num_rate / st->den_rate;
+ /* Round down to make sure we have a multiple of 4 */
+ st->filt_len &= (~0x3);
+ if (2 * st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (4 * st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (8 * st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (16 * st->den_rate < st->num_rate)
+ st->oversample >>= 1;
+ if (st->oversample < 1)
+ st->oversample = 1;
+ } else {
+ /* up-sampling */
+ st->cutoff = quality_map[st->quality].upsample_bandwidth;
+ }
+
+ /* Choose the resampling type that requires the least amount of memory */
+ if (st->den_rate <= st->oversample) {
+ spx_uint32_t i;
+
+ if (!st->sinc_table)
+ st->sinc_table =
+ (spx_word16_t *) speex_alloc (st->filt_len * st->den_rate *
+ sizeof (spx_word16_t));
+ else if (st->sinc_table_length < st->filt_len * st->den_rate) {
+ st->sinc_table =
+ (spx_word16_t *) speex_realloc (st->sinc_table,
+ st->filt_len * st->den_rate * sizeof (spx_word16_t));
+ st->sinc_table_length = st->filt_len * st->den_rate;
+ }
+ for (i = 0; i < st->den_rate; i++) {
+ spx_int32_t j;
+
+ for (j = 0; j < st->filt_len; j++) {
+ st->sinc_table[i * st->filt_len + j] =
+ sinc (st->cutoff,
+ ((j - (spx_int32_t) st->filt_len / 2 + 1) -
+ ((float) i) / st->den_rate), st->filt_len,
+ quality_map[st->quality].window_func);
+ }
+ }
+#ifdef FIXED_POINT
+ st->resampler_ptr = resampler_basic_direct_single;
+#else
+ if (st->quality > 8)
+ st->resampler_ptr = resampler_basic_direct_double;
+ else
+ st->resampler_ptr = resampler_basic_direct_single;
+#endif
+ /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */
+ } else {
+ spx_int32_t i;
+
+ if (!st->sinc_table)
+ st->sinc_table =
+ (spx_word16_t *) speex_alloc ((st->filt_len * st->oversample +
+ 8) * sizeof (spx_word16_t));
+ else if (st->sinc_table_length < st->filt_len * st->oversample + 8) {
+ st->sinc_table =
+ (spx_word16_t *) speex_realloc (st->sinc_table,
+ (st->filt_len * st->oversample + 8) * sizeof (spx_word16_t));
+ st->sinc_table_length = st->filt_len * st->oversample + 8;
+ }
+ for (i = -4; i < (spx_int32_t) (st->oversample * st->filt_len + 4); i++)
+ st->sinc_table[i + 4] =
+ sinc (st->cutoff, (i / (float) st->oversample - st->filt_len / 2),
+ st->filt_len, quality_map[st->quality].window_func);
+#ifdef FIXED_POINT
+ st->resampler_ptr = resampler_basic_interpolate_single;
+#else
+ if (st->quality > 8)
+ st->resampler_ptr = resampler_basic_interpolate_double;
+ else
+ st->resampler_ptr = resampler_basic_interpolate_single;
+#endif
+ /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff); */
+ }
+ st->int_advance = st->num_rate / st->den_rate;
+ st->frac_advance = st->num_rate % st->den_rate;
+
+
+ /* Here's the place where we update the filter memory to take into account
+ the change in filter length. It's probably the messiest part of the code
+ due to handling of lots of corner cases. */
+ if (!st->mem) {
+ spx_uint32_t i;
+
+ st->mem =
+ (spx_word16_t *) speex_alloc (st->nb_channels * (st->filt_len -
+ 1) * sizeof (spx_word16_t));
+ for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
+ st->mem[i] = 0;
+ st->mem_alloc_size = st->filt_len - 1;
+ /*speex_warning("init filter"); */
+ } else if (!st->started) {
+ spx_uint32_t i;
+
+ st->mem =
+ (spx_word16_t *) speex_realloc (st->mem,
+ st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t));
+ for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
+ st->mem[i] = 0;
+ st->mem_alloc_size = st->filt_len - 1;
+ /*speex_warning("reinit filter"); */
+ } else if (st->filt_len > old_length) {
+ spx_int32_t i;
+
+ /* Increase the filter length */
+ /*speex_warning("increase filter size"); */
+ int old_alloc_size = st->mem_alloc_size;
+
+ if (st->filt_len - 1 > st->mem_alloc_size) {
+ st->mem =
+ (spx_word16_t *) speex_realloc (st->mem,
+ st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t));
+ st->mem_alloc_size = st->filt_len - 1;
+ }
+ for (i = st->nb_channels - 1; i >= 0; i--) {
+ spx_int32_t j;
+ spx_uint32_t olen = old_length;
+
+ /*if (st->magic_samples[i]) */
+ {
+ /* Try and remove the magic samples as if nothing had happened */
+
+ /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */
+ olen = old_length + 2 * st->magic_samples[i];
+ for (j = old_length - 2 + st->magic_samples[i]; j >= 0; j--)
+ st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]] =
+ st->mem[i * old_alloc_size + j];
+ for (j = 0; j < st->magic_samples[i]; j++)
+ st->mem[i * st->mem_alloc_size + j] = 0;
+ st->magic_samples[i] = 0;
+ }
+ if (st->filt_len > olen) {
+ /* If the new filter length is still bigger than the "augmented" length */
+ /* Copy data going backward */
+ for (j = 0; j < olen - 1; j++)
+ st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] =
+ st->mem[i * st->mem_alloc_size + (olen - 2 - j)];
+ /* Then put zeros for lack of anything better */
+ for (; j < st->filt_len - 1; j++)
+ st->mem[i * st->mem_alloc_size + (st->filt_len - 2 - j)] = 0;
+ /* Adjust last_sample */
+ st->last_sample[i] += (st->filt_len - olen) / 2;
+ } else {
+ /* Put back some of the magic! */
+ st->magic_samples[i] = (olen - st->filt_len) / 2;
+ for (j = 0; j < st->filt_len - 1 + st->magic_samples[i]; j++)
+ st->mem[i * st->mem_alloc_size + j] =
+ st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]];
+ }
+ }
+ } else if (st->filt_len < old_length) {
+ spx_uint32_t i;
+
+ /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic"
+ samples so they can be used directly as input the next time(s) */
+ for (i = 0; i < st->nb_channels; i++) {
+ spx_uint32_t j;
+ spx_uint32_t old_magic = st->magic_samples[i];
+
+ st->magic_samples[i] = (old_length - st->filt_len) / 2;
+ /* We must copy some of the memory that's no longer used */
+ /* Copy data going backward */
+ for (j = 0; j < st->filt_len - 1 + st->magic_samples[i] + old_magic; j++)
+ st->mem[i * st->mem_alloc_size + j] =
+ st->mem[i * st->mem_alloc_size + j + st->magic_samples[i]];
+ st->magic_samples[i] += old_magic;
+ }
+ }
+
+}
+
+SpeexResamplerState *
+speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate,
+ spx_uint32_t out_rate, int quality, int *err)
+{
+ return speex_resampler_init_frac (nb_channels, in_rate, out_rate, in_rate,
+ out_rate, quality, err);
+}
+
+SpeexResamplerState *
+speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate,
+ int quality, int *err)
+{
+ spx_uint32_t i;
+ SpeexResamplerState *st;
+
+ if (quality > 10 || quality < 0) {
+ if (err)
+ *err = RESAMPLER_ERR_INVALID_ARG;
+ return NULL;
+ }
+ st = (SpeexResamplerState *) speex_alloc (sizeof (SpeexResamplerState));
+ st->initialised = 0;
+ st->started = 0;
+ st->in_rate = 0;
+ st->out_rate = 0;
+ st->num_rate = 0;
+ st->den_rate = 0;
+ st->quality = -1;
+ st->sinc_table_length = 0;
+ st->mem_alloc_size = 0;
+ st->filt_len = 0;
+ st->mem = 0;
+ st->resampler_ptr = 0;
+
+ st->cutoff = 1.f;
+ st->nb_channels = nb_channels;
+ st->in_stride = 1;
+ st->out_stride = 1;
+
+ /* Per channel data */
+ st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int));
+ st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
+ st->samp_frac_num = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int));
+ for (i = 0; i < nb_channels; i++) {
+ st->last_sample[i] = 0;
+ st->magic_samples[i] = 0;
+ st->samp_frac_num[i] = 0;
+ }
+
+ speex_resampler_set_quality (st, quality);
+ speex_resampler_set_rate_frac (st, ratio_num, ratio_den, in_rate, out_rate);
+
+
+ update_filter (st);
+
+ st->initialised = 1;
+ if (err)
+ *err = RESAMPLER_ERR_SUCCESS;
+
+ return st;
+}
+
+void
+speex_resampler_destroy (SpeexResamplerState * st)
+{
+ speex_free (st->mem);
+ speex_free (st->sinc_table);
+ speex_free (st->last_sample);
+ speex_free (st->magic_samples);
+ speex_free (st->samp_frac_num);
+ speex_free (st);
+}
+
+
+
+static int
+speex_resampler_process_native (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len,
+ spx_word16_t * out, spx_uint32_t * out_len)
+{
+ int j = 0;
+ int N = st->filt_len;
+ int out_sample = 0;
+ spx_word16_t *mem;
+ spx_uint32_t tmp_out_len = 0;
+
+ mem = st->mem + channel_index * st->mem_alloc_size;
+ st->started = 1;
+
+ /* Handle the case where we have samples left from a reduction in filter length */
+ if (st->magic_samples[channel_index]) {
+ int istride_save;
+ spx_uint32_t tmp_in_len;
+ spx_uint32_t tmp_magic;
+
+ istride_save = st->in_stride;
+ tmp_in_len = st->magic_samples[channel_index];
+ tmp_out_len = *out_len;
+ /* magic_samples needs to be set to zero to avoid infinite recursion */
+ tmp_magic = st->magic_samples[channel_index];
+ st->magic_samples[channel_index] = 0;
+ st->in_stride = 1;
+ speex_resampler_process_native (st, channel_index, mem + N - 1, &tmp_in_len,
+ out, &tmp_out_len);
+ st->in_stride = istride_save;
+ /*speex_warning_int("extra samples:", tmp_out_len); */
+ /* If we couldn't process all "magic" input samples, save the rest for next time */
+ if (tmp_in_len < tmp_magic) {
+ spx_uint32_t i;
+
+ st->magic_samples[channel_index] = tmp_magic - tmp_in_len;
+ for (i = 0; i < st->magic_samples[channel_index]; i++)
+ mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len];
+ }
+ out += tmp_out_len * st->out_stride;
+ *out_len -= tmp_out_len;
+ }
+
+ /* Call the right resampler through the function ptr */
+ out_sample = st->resampler_ptr (st, channel_index, in, in_len, out, out_len);
+
+ if (st->last_sample[channel_index] < (spx_int32_t) * in_len)
+ *in_len = st->last_sample[channel_index];
+ *out_len = out_sample + tmp_out_len;
+ st->last_sample[channel_index] -= *in_len;
+
+ for (j = 0; j < N - 1 - (spx_int32_t) * in_len; j++)
+ mem[j] = mem[j + *in_len];
+ for (; j < N - 1; j++)
+ mem[j] = in[st->in_stride * (j + *in_len - N + 1)];
+
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+#define FIXED_STACK_ALLOC 1024
+
+#ifdef FIXED_POINT
+int
+speex_resampler_process_float (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
+ float *out, spx_uint32_t * out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+
+#ifdef VAR_ARRAYS
+ spx_word16_t x[*in_len];
+ spx_word16_t y[*out_len];
+
+ /*VARDECL(spx_word16_t *x);
+ VARDECL(spx_word16_t *y);
+ ALLOC(x, *in_len, spx_word16_t);
+ ALLOC(y, *out_len, spx_word16_t); */
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ for (i = 0; i < *in_len; i++)
+ x[i] = WORD2INT (in[i * st->in_stride]);
+ st->in_stride = st->out_stride = 1;
+ speex_resampler_process_native (st, channel_index, x, in_len, y, out_len);
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ for (i = 0; i < *out_len; i++)
+ out[i * st->out_stride] = y[i];
+#else
+ spx_word16_t x[FIXED_STACK_ALLOC];
+ spx_word16_t y[FIXED_STACK_ALLOC];
+ spx_uint32_t ilen = *in_len, olen = *out_len;
+
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ while (ilen && olen) {
+ spx_uint32_t ichunk, ochunk;
+
+ ichunk = ilen;
+ ochunk = olen;
+ if (ichunk > FIXED_STACK_ALLOC)
+ ichunk = FIXED_STACK_ALLOC;
+ if (ochunk > FIXED_STACK_ALLOC)
+ ochunk = FIXED_STACK_ALLOC;
+ for (i = 0; i < ichunk; i++)
+ x[i] = WORD2INT (in[i * st->in_stride]);
+ st->in_stride = st->out_stride = 1;
+ speex_resampler_process_native (st, channel_index, x, &ichunk, y, &ochunk);
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ for (i = 0; i < ochunk; i++)
+ out[i * st->out_stride] = y[i];
+ out += ochunk;
+ in += ichunk;
+ ilen -= ichunk;
+ olen -= ochunk;
+ }
+ *in_len -= ilen;
+ *out_len -= olen;
+#endif
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+int
+speex_resampler_process_int (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
+ spx_int16_t * out, spx_uint32_t * out_len)
+{
+ return speex_resampler_process_native (st, channel_index, in, in_len, out,
+ out_len);
+}
+#else
+int
+speex_resampler_process_float (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len,
+ float *out, spx_uint32_t * out_len)
+{
+ return speex_resampler_process_native (st, channel_index, in, in_len, out,
+ out_len);
+}
+
+int
+speex_resampler_process_int (SpeexResamplerState * st,
+ spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len,
+ spx_int16_t * out, spx_uint32_t * out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+
+#ifdef VAR_ARRAYS
+ spx_word16_t x[*in_len];
+ spx_word16_t y[*out_len];
+
+ /*VARDECL(spx_word16_t *x);
+ VARDECL(spx_word16_t *y);
+ ALLOC(x, *in_len, spx_word16_t);
+ ALLOC(y, *out_len, spx_word16_t); */
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ for (i = 0; i < *in_len; i++)
+ x[i] = in[i * st->in_stride];
+ st->in_stride = st->out_stride = 1;
+ speex_resampler_process_native (st, channel_index, x, in_len, y, out_len);
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ for (i = 0; i < *out_len; i++)
+ out[i * st->out_stride] = WORD2INT (y[i]);
+#else
+ spx_word16_t x[FIXED_STACK_ALLOC];
+ spx_word16_t y[FIXED_STACK_ALLOC];
+ spx_uint32_t ilen = *in_len, olen = *out_len;
+
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ while (ilen && olen) {
+ spx_uint32_t ichunk, ochunk;
+
+ ichunk = ilen;
+ ochunk = olen;
+ if (ichunk > FIXED_STACK_ALLOC)
+ ichunk = FIXED_STACK_ALLOC;
+ if (ochunk > FIXED_STACK_ALLOC)
+ ochunk = FIXED_STACK_ALLOC;
+ for (i = 0; i < ichunk; i++)
+ x[i] = in[i * st->in_stride];
+ st->in_stride = st->out_stride = 1;
+ speex_resampler_process_native (st, channel_index, x, &ichunk, y, &ochunk);
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ for (i = 0; i < ochunk; i++)
+ out[i * st->out_stride] = WORD2INT (y[i]);
+ out += ochunk;
+ in += ichunk;
+ ilen -= ichunk;
+ olen -= ochunk;
+ }
+ *in_len -= ilen;
+ *out_len -= olen;
+#endif
+ return RESAMPLER_ERR_SUCCESS;
+}
+#endif
+
+int
+speex_resampler_process_interleaved_float (SpeexResamplerState * st,
+ const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+ spx_uint32_t bak_len = *out_len;
+
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ st->in_stride = st->out_stride = st->nb_channels;
+ for (i = 0; i < st->nb_channels; i++) {
+ *out_len = bak_len;
+ speex_resampler_process_float (st, i, in + i, in_len, out + i, out_len);
+ }
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+
+int
+speex_resampler_process_interleaved_int (SpeexResamplerState * st,
+ const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out,
+ spx_uint32_t * out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+ spx_uint32_t bak_len = *out_len;
+
+ istride_save = st->in_stride;
+ ostride_save = st->out_stride;
+ st->in_stride = st->out_stride = st->nb_channels;
+ for (i = 0; i < st->nb_channels; i++) {
+ *out_len = bak_len;
+ speex_resampler_process_int (st, i, in + i, in_len, out + i, out_len);
+ }
+ st->in_stride = istride_save;
+ st->out_stride = ostride_save;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+int
+speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate,
+ spx_uint32_t out_rate)
+{
+ return speex_resampler_set_rate_frac (st, in_rate, out_rate, in_rate,
+ out_rate);
+}
+
+void
+speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate,
+ spx_uint32_t * out_rate)
+{
+ *in_rate = st->in_rate;
+ *out_rate = st->out_rate;
+}
+
+int
+speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num,
+ spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate)
+{
+ spx_uint32_t fact;
+ spx_uint32_t old_den;
+ spx_uint32_t i;
+
+ if (st->in_rate == in_rate && st->out_rate == out_rate
+ && st->num_rate == ratio_num && st->den_rate == ratio_den)
+ return RESAMPLER_ERR_SUCCESS;
+
+ old_den = st->den_rate;
+ st->in_rate = in_rate;
+ st->out_rate = out_rate;
+ st->num_rate = ratio_num;
+ st->den_rate = ratio_den;
+ /* FIXME: This is terribly inefficient, but who cares (at least for now)? */
+ for (fact = 2; fact <= IMIN (st->num_rate, st->den_rate); fact++) {
+ while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0)) {
+ st->num_rate /= fact;
+ st->den_rate /= fact;
+ }
+ }
+
+ if (old_den > 0) {
+ for (i = 0; i < st->nb_channels; i++) {
+ st->samp_frac_num[i] = st->samp_frac_num[i] * st->den_rate / old_den;
+ /* Safety net */
+ if (st->samp_frac_num[i] >= st->den_rate)
+ st->samp_frac_num[i] = st->den_rate - 1;
+ }
+ }
+
+ if (st->initialised)
+ update_filter (st);
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+void
+speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num,
+ spx_uint32_t * ratio_den)
+{
+ *ratio_num = st->num_rate;
+ *ratio_den = st->den_rate;
+}
+
+int
+speex_resampler_set_quality (SpeexResamplerState * st, int quality)
+{
+ if (quality > 10 || quality < 0)
+ return RESAMPLER_ERR_INVALID_ARG;
+ if (st->quality == quality)
+ return RESAMPLER_ERR_SUCCESS;
+ st->quality = quality;
+ if (st->initialised)
+ update_filter (st);
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+void
+speex_resampler_get_quality (SpeexResamplerState * st, int *quality)
+{
+ *quality = st->quality;
+}
+
+void
+speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride)
+{
+ st->in_stride = stride;
+}
+
+void
+speex_resampler_get_input_stride (SpeexResamplerState * st,
+ spx_uint32_t * stride)
+{
+ *stride = st->in_stride;
+}
+
+void
+speex_resampler_set_output_stride (SpeexResamplerState * st,
+ spx_uint32_t stride)
+{
+ st->out_stride = stride;
+}
+
+void
+speex_resampler_get_output_stride (SpeexResamplerState * st,
+ spx_uint32_t * stride)
+{
+ *stride = st->out_stride;
+}
+
+int
+speex_resampler_skip_zeros (SpeexResamplerState * st)
+{
+ spx_uint32_t i;
+
+ for (i = 0; i < st->nb_channels; i++)
+ st->last_sample[i] = st->filt_len / 2;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+int
+speex_resampler_reset_mem (SpeexResamplerState * st)
+{
+ spx_uint32_t i;
+
+ for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++)
+ st->mem[i] = 0;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+const char *
+speex_resampler_strerror (int err)
+{
+ switch (err) {
+ case RESAMPLER_ERR_SUCCESS:
+ return "Success.";
+ case RESAMPLER_ERR_ALLOC_FAILED:
+ return "Memory allocation failed.";
+ case RESAMPLER_ERR_BAD_STATE:
+ return "Bad resampler state.";
+ case RESAMPLER_ERR_INVALID_ARG:
+ return "Invalid argument.";
+ case RESAMPLER_ERR_PTR_OVERLAP:
+ return "Input and output buffers overlap.";
+ default:
+ return "Unknown error. Bad error code or strange version mismatch.";
+ }
+}