From 0331f0c33bae42b8f871a0014895679d4d67a811 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sebastian=20Dr=C3=B6ge?= Date: Tue, 28 Oct 2008 11:46:28 +0000 Subject: gst/speexresample/: Update Speex resampler with latest version from Speex GIT. Original commit message from CVS: * gst/speexresample/README: * gst/speexresample/arch.h: * gst/speexresample/fixed_arm4.h: * gst/speexresample/fixed_arm5e.h: * gst/speexresample/fixed_bfin.h: * gst/speexresample/fixed_debug.h: * gst/speexresample/fixed_generic.h: * gst/speexresample/resample.c: (compute_func), (main), (sinc), (cubic_coef), (resampler_basic_direct_single), (resampler_basic_direct_double), (resampler_basic_interpolate_single), (resampler_basic_interpolate_double), (update_filter), (speex_resampler_init_frac), (speex_resampler_process_native), (speex_resampler_magic), (speex_resampler_process_float), (speex_resampler_process_int), (speex_resampler_process_interleaved_float), (speex_resampler_process_interleaved_int), (speex_resampler_set_rate_frac), (speex_resampler_skip_zeros), (speex_resampler_reset_mem): * gst/speexresample/speex_resampler.h: Update Speex resampler with latest version from Speex GIT. --- gst/speexresample/resample.c | 726 +++++++++++++++++++------------------------ 1 file changed, 320 insertions(+), 406 deletions(-) (limited to 'gst/speexresample/resample.c') diff --git a/gst/speexresample/resample.c b/gst/speexresample/resample.c index 29b95f23..ec127aa1 100644 --- a/gst/speexresample/resample.c +++ b/gst/speexresample/resample.c @@ -1,4 +1,5 @@ -/* Copyright (C) 2007 Jean-Marc Valin +/* Copyright (C) 2007-2008 Jean-Marc Valin + Copyright (C) 2008 Thorvald Natvig File: resample.c Arbitrary resampling code @@ -62,13 +63,17 @@ #ifdef OUTSIDE_SPEEX #include + #include +#define EXPORT + static inline void * speex_alloc (int size) { return g_malloc0 (size); } + static inline void * speex_realloc (void *ptr, int size) { @@ -85,7 +90,7 @@ speex_free (void *ptr) #include "arch.h" #else /* OUTSIDE_SPEEX */ -#include "speex/speex_resampler.h" +#include "../include/speex/speex_resampler.h" #include "arch.h" #include "os_support.h" #endif /* OUTSIDE_SPEEX */ @@ -102,10 +107,6 @@ speex_free (void *ptr) #define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x)))) #endif -/*#define float double*/ -#define FILTER_SIZE 64 -#define OVERSAMPLE 8 - #define IMAX(a,b) ((a) > (b) ? (a) : (b)) #define IMIN(a,b) ((a) < (b) ? (a) : (b)) @@ -113,6 +114,17 @@ speex_free (void *ptr) #define NULL 0 #endif +#ifdef _USE_SSE +#include "resample_sse.h" +#endif + +/* Numer of elements to allocate on the stack */ +#ifdef VAR_ARRAYS +#define FIXED_STACK_ALLOC 8192 +#else +#define FIXED_STACK_ALLOC 1024 +#endif + typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t, const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); @@ -127,6 +139,7 @@ struct SpeexResamplerState_ spx_uint32_t nb_channels; spx_uint32_t filt_len; spx_uint32_t mem_alloc_size; + spx_uint32_t buffer_size; int int_advance; int frac_advance; float cutoff; @@ -260,7 +273,6 @@ compute_func (float x, struct FuncDef *func) float y, frac; double interp[4]; int ind; - y = x * func->oversample; ind = (int) floor (y); frac = (y - ind); @@ -285,7 +297,6 @@ int main (int argc, char **argv) { int i; - for (i = 0; i < 256; i++) { printf ("%f\n", compute_func (i / 256., KAISER12)); } @@ -300,7 +311,6 @@ sinc (float cutoff, float x, int N, struct FuncDef *window_func) { /*fprintf (stderr, "%f ", x); */ float xx = x * cutoff; - if (fabs (x) < 1e-6f) return WORD2INT (32768. * cutoff); else if (fabs (x) > .5f * N) @@ -316,7 +326,6 @@ sinc (float cutoff, float x, int N, struct FuncDef *window_func) { /*fprintf (stderr, "%f ", x); */ float xx = x * cutoff; - if (fabs (x) < 1e-6) return cutoff; else if (fabs (x) > .5 * N) @@ -334,7 +343,6 @@ cubic_coef (spx_word16_t x, spx_word16_t interp[4]) /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation but I know it's MMSE-optimal on a sinc */ spx_word16_t x2, x3; - x2 = MULT16_16_P15 (x, x); x3 = MULT16_16_P15 (x, x2); interp[0] = @@ -373,48 +381,46 @@ resampler_basic_direct_single (SpeexResamplerState * st, spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, spx_word16_t * out, spx_uint32_t * out_len) { - int N = st->filt_len; + const int N = st->filt_len; int out_sample = 0; - spx_word16_t *mem; int last_sample = st->last_sample[channel_index]; spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + const spx_word16_t *sinc_table = st->sinc_table; + const int out_stride = st->out_stride; + const int int_advance = st->int_advance; + const int frac_advance = st->frac_advance; + const spx_uint32_t den_rate = st->den_rate; + spx_word32_t sum; + int j; - mem = st->mem + channel_index * st->mem_alloc_size; while (!(last_sample >= (spx_int32_t) * in_len || out_sample >= (spx_int32_t) * out_len)) { - int j; - spx_word32_t sum = 0; - - /* We already have all the filter coefficients pre-computed in the table */ - const spx_word16_t *ptr; + const spx_word16_t *sinc = &sinc_table[samp_frac_num * N]; + const spx_word16_t *iptr = &in[last_sample]; - /* Do the memory part */ - for (j = 0; last_sample - N + 1 + j < 0; j++) { - sum += - MULT16_16 (mem[last_sample + j], - st->sinc_table[samp_frac_num * st->filt_len + j]); - } +#ifndef OVERRIDE_INNER_PRODUCT_SINGLE + float accum[4] = { 0, 0, 0, 0 }; - /* Do the new part */ - if (in != NULL) { - ptr = in + st->in_stride * (last_sample - N + 1 + j); - for (; j < N; j++) { - sum += - MULT16_16 (*ptr, st->sinc_table[samp_frac_num * st->filt_len + j]); - ptr += st->in_stride; - } + for (j = 0; j < N; j += 4) { + accum[0] += sinc[j] * iptr[j]; + accum[1] += sinc[j + 1] * iptr[j + 1]; + accum[2] += sinc[j + 2] * iptr[j + 2]; + accum[3] += sinc[j + 3] * iptr[j + 3]; } + sum = accum[0] + accum[1] + accum[2] + accum[3]; +#else + sum = inner_product_single (sinc, iptr, N); +#endif - *out = PSHR32 (sum, 15); - out += st->out_stride; - out_sample++; - last_sample += st->int_advance; - samp_frac_num += st->frac_advance; - if (samp_frac_num >= st->den_rate) { - samp_frac_num -= st->den_rate; + out[out_stride * out_sample++] = PSHR32 (sum, 15); + last_sample += int_advance; + samp_frac_num += frac_advance; + if (samp_frac_num >= den_rate) { + samp_frac_num -= den_rate; last_sample++; } } + st->last_sample[channel_index] = last_sample; st->samp_frac_num[channel_index] = samp_frac_num; return out_sample; @@ -428,49 +434,46 @@ resampler_basic_direct_double (SpeexResamplerState * st, spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, spx_word16_t * out, spx_uint32_t * out_len) { - int N = st->filt_len; + const int N = st->filt_len; int out_sample = 0; - spx_word16_t *mem; int last_sample = st->last_sample[channel_index]; spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + const spx_word16_t *sinc_table = st->sinc_table; + const int out_stride = st->out_stride; + const int int_advance = st->int_advance; + const int frac_advance = st->frac_advance; + const spx_uint32_t den_rate = st->den_rate; + double sum; + int j; - mem = st->mem + channel_index * st->mem_alloc_size; while (!(last_sample >= (spx_int32_t) * in_len || out_sample >= (spx_int32_t) * out_len)) { - int j; - double sum = 0; + const spx_word16_t *sinc = &sinc_table[samp_frac_num * N]; + const spx_word16_t *iptr = &in[last_sample]; - /* We already have all the filter coefficients pre-computed in the table */ - const spx_word16_t *ptr; +#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE + double accum[4] = { 0, 0, 0, 0 }; - /* Do the memory part */ - for (j = 0; last_sample - N + 1 + j < 0; j++) { - sum += - MULT16_16 (mem[last_sample + j], - (double) st->sinc_table[samp_frac_num * st->filt_len + j]); - } - - /* Do the new part */ - if (in != NULL) { - ptr = in + st->in_stride * (last_sample - N + 1 + j); - for (; j < N; j++) { - sum += - MULT16_16 (*ptr, - (double) st->sinc_table[samp_frac_num * st->filt_len + j]); - ptr += st->in_stride; - } + for (j = 0; j < N; j += 4) { + accum[0] += sinc[j] * iptr[j]; + accum[1] += sinc[j + 1] * iptr[j + 1]; + accum[2] += sinc[j + 2] * iptr[j + 2]; + accum[3] += sinc[j + 3] * iptr[j + 3]; } + sum = accum[0] + accum[1] + accum[2] + accum[3]; +#else + sum = inner_product_double (sinc, iptr, N); +#endif - *out = sum; - out += st->out_stride; - out_sample++; - last_sample += st->int_advance; - samp_frac_num += st->frac_advance; - if (samp_frac_num >= st->den_rate) { - samp_frac_num -= st->den_rate; + out[out_stride * out_sample++] = PSHR32 (sum, 15); + last_sample += int_advance; + samp_frac_num += frac_advance; + if (samp_frac_num >= den_rate) { + samp_frac_num -= den_rate; last_sample++; } } + st->last_sample[channel_index] = last_sample; st->samp_frac_num[channel_index] = samp_frac_num; return out_sample; @@ -482,92 +485,75 @@ resampler_basic_interpolate_single (SpeexResamplerState * st, spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, spx_word16_t * out, spx_uint32_t * out_len) { - int N = st->filt_len; + const int N = st->filt_len; int out_sample = 0; - spx_word16_t *mem; int last_sample = st->last_sample[channel_index]; spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + const int out_stride = st->out_stride; + const int int_advance = st->int_advance; + const int frac_advance = st->frac_advance; + const spx_uint32_t den_rate = st->den_rate; + int j; + spx_word32_t sum; - mem = st->mem + channel_index * st->mem_alloc_size; while (!(last_sample >= (spx_int32_t) * in_len || out_sample >= (spx_int32_t) * out_len)) { - int j; - spx_word32_t sum = 0; + const spx_word16_t *iptr = &in[last_sample]; - /* We need to interpolate the sinc filter */ - spx_word32_t accum[4] = { 0.f, 0.f, 0.f, 0.f }; - spx_word16_t interp[4]; - const spx_word16_t *ptr; - int offset; - spx_word16_t frac; - - offset = samp_frac_num * st->oversample / st->den_rate; + const int offset = samp_frac_num * st->oversample / st->den_rate; #ifdef FIXED_POINT - frac = + const spx_word16_t frac = PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15), st->den_rate); #else - frac = + const spx_word16_t frac = ((float) ((samp_frac_num * st->oversample) % st->den_rate)) / st->den_rate; #endif - /* This code is written like this to make it easy to optimise with SIMD. - For most DSPs, it would be best to split the loops in two because most DSPs - have only two accumulators */ - for (j = 0; last_sample - N + 1 + j < 0; j++) { - spx_word16_t curr_mem = mem[last_sample + j]; + spx_word16_t interp[4]; + +#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE + spx_word32_t accum[4] = { 0, 0, 0, 0 }; + + for (j = 0; j < N; j++) { + const spx_word16_t curr_in = iptr[j]; accum[0] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); accum[1] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); accum[2] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset]); accum[3] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); } - if (in != NULL) { - ptr = in + st->in_stride * (last_sample - N + 1 + j); - /* Do the new part */ - for (; j < N; j++) { - spx_word16_t curr_in = *ptr; - - ptr += st->in_stride; - accum[0] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); - accum[1] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); - accum[2] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset]); - accum[3] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); - } - } cubic_coef (frac, interp); sum = MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1], accum[1]) + MULT16_32_Q15 (interp[2], accum[2]) + MULT16_32_Q15 (interp[3], accum[3]); +#else + cubic_coef (frac, interp); + sum = + interpolate_product_single (iptr, + st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, + interp); +#endif - *out = PSHR32 (sum, 15); - out += st->out_stride; - out_sample++; - last_sample += st->int_advance; - samp_frac_num += st->frac_advance; - if (samp_frac_num >= st->den_rate) { - samp_frac_num -= st->den_rate; + out[out_stride * out_sample++] = PSHR32 (sum, 15); + last_sample += int_advance; + samp_frac_num += frac_advance; + if (samp_frac_num >= den_rate) { + samp_frac_num -= den_rate; last_sample++; } } + st->last_sample[channel_index] = last_sample; st->samp_frac_num[channel_index] = samp_frac_num; return out_sample; @@ -581,81 +567,75 @@ resampler_basic_interpolate_double (SpeexResamplerState * st, spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, spx_word16_t * out, spx_uint32_t * out_len) { - int N = st->filt_len; + const int N = st->filt_len; int out_sample = 0; - spx_word16_t *mem; int last_sample = st->last_sample[channel_index]; spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; + const int out_stride = st->out_stride; + const int int_advance = st->int_advance; + const int frac_advance = st->frac_advance; + const spx_uint32_t den_rate = st->den_rate; + int j; + spx_word32_t sum; - mem = st->mem + channel_index * st->mem_alloc_size; while (!(last_sample >= (spx_int32_t) * in_len || out_sample >= (spx_int32_t) * out_len)) { - int j; - spx_word32_t sum = 0; - - /* We need to interpolate the sinc filter */ - double accum[4] = { 0.f, 0.f, 0.f, 0.f }; - float interp[4]; - const spx_word16_t *ptr; - float alpha = ((float) samp_frac_num) / st->den_rate; - int offset = samp_frac_num * st->oversample / st->den_rate; - float frac = alpha * st->oversample - offset; - - /* This code is written like this to make it easy to optimise with SIMD. - For most DSPs, it would be best to split the loops in two because most DSPs - have only two accumulators */ - for (j = 0; last_sample - N + 1 + j < 0; j++) { - double curr_mem = mem[last_sample + j]; + const spx_word16_t *iptr = &in[last_sample]; + const int offset = samp_frac_num * st->oversample / st->den_rate; +#ifdef FIXED_POINT + const spx_word16_t frac = + PDIV32 (SHL32 ((samp_frac_num * st->oversample) % st->den_rate, 15), + st->den_rate); +#else + const spx_word16_t frac = + ((float) ((samp_frac_num * st->oversample) % st->den_rate)) / + st->den_rate; +#endif + spx_word16_t interp[4]; + + +#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE + double accum[4] = { 0, 0, 0, 0 }; + + for (j = 0; j < N; j++) { + const double curr_in = iptr[j]; accum[0] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); accum[1] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); accum[2] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset]); accum[3] += - MULT16_16 (curr_mem, + MULT16_16 (curr_in, st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); } - if (in != NULL) { - ptr = in + st->in_stride * (last_sample - N + 1 + j); - /* Do the new part */ - for (; j < N; j++) { - double curr_in = *ptr; - - ptr += st->in_stride; - accum[0] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 2]); - accum[1] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset - 1]); - accum[2] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset]); - accum[3] += - MULT16_16 (curr_in, - st->sinc_table[4 + (j + 1) * st->oversample - offset + 1]); - } - } + + cubic_coef (frac, interp); + sum = + MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1], + accum[1]) + MULT16_32_Q15 (interp[2], + accum[2]) + MULT16_32_Q15 (interp[3], accum[3]); +#else cubic_coef (frac, interp); sum = - interp[0] * accum[0] + interp[1] * accum[1] + interp[2] * accum[2] + - interp[3] * accum[3]; - - *out = PSHR32 (sum, 15); - out += st->out_stride; - out_sample++; - last_sample += st->int_advance; - samp_frac_num += st->frac_advance; - if (samp_frac_num >= st->den_rate) { - samp_frac_num -= st->den_rate; + interpolate_product_double (iptr, + st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, + interp); +#endif + + out[out_stride * out_sample++] = PSHR32 (sum, 15); + last_sample += int_advance; + samp_frac_num += frac_advance; + if (samp_frac_num >= den_rate) { + samp_frac_num -= den_rate; last_sample++; } } + st->last_sample[channel_index] = last_sample; st->samp_frac_num[channel_index] = samp_frac_num; return out_sample; @@ -698,7 +678,6 @@ update_filter (SpeexResamplerState * st) /* Choose the resampling type that requires the least amount of memory */ if (st->den_rate <= st->oversample) { spx_uint32_t i; - if (!st->sinc_table) st->sinc_table = (spx_word16_t *) speex_alloc (st->filt_len * st->den_rate * @@ -711,7 +690,6 @@ update_filter (SpeexResamplerState * st) } for (i = 0; i < st->den_rate; i++) { spx_int32_t j; - for (j = 0; j < st->filt_len; j++) { st->sinc_table[i * st->filt_len + j] = sinc (st->cutoff, @@ -731,7 +709,6 @@ update_filter (SpeexResamplerState * st) /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff); */ } else { spx_int32_t i; - if (!st->sinc_table) st->sinc_table = (spx_word16_t *) speex_alloc ((st->filt_len * st->oversample + @@ -765,41 +742,36 @@ update_filter (SpeexResamplerState * st) due to handling of lots of corner cases. */ if (!st->mem) { spx_uint32_t i; - + st->mem_alloc_size = st->filt_len - 1 + st->buffer_size; st->mem = - (spx_word16_t *) speex_alloc (st->nb_channels * (st->filt_len - - 1) * sizeof (spx_word16_t)); - for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) + (spx_word16_t *) speex_alloc (st->nb_channels * st->mem_alloc_size * + sizeof (spx_word16_t)); + for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++) st->mem[i] = 0; - st->mem_alloc_size = st->filt_len - 1; /*speex_warning("init filter"); */ } else if (!st->started) { spx_uint32_t i; - + st->mem_alloc_size = st->filt_len - 1 + st->buffer_size; st->mem = (spx_word16_t *) speex_realloc (st->mem, - st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t)); - for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) + st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t)); + for (i = 0; i < st->nb_channels * st->mem_alloc_size; i++) st->mem[i] = 0; - st->mem_alloc_size = st->filt_len - 1; /*speex_warning("reinit filter"); */ } else if (st->filt_len > old_length) { spx_int32_t i; - /* Increase the filter length */ /*speex_warning("increase filter size"); */ int old_alloc_size = st->mem_alloc_size; - - if (st->filt_len - 1 > st->mem_alloc_size) { + if ((st->filt_len - 1 + st->buffer_size) > st->mem_alloc_size) { + st->mem_alloc_size = st->filt_len - 1 + st->buffer_size; st->mem = (spx_word16_t *) speex_realloc (st->mem, - st->nb_channels * (st->filt_len - 1) * sizeof (spx_word16_t)); - st->mem_alloc_size = st->filt_len - 1; + st->nb_channels * st->mem_alloc_size * sizeof (spx_word16_t)); } for (i = st->nb_channels - 1; i >= 0; i--) { spx_int32_t j; spx_uint32_t olen = old_length; - /*if (st->magic_samples[i]) */ { /* Try and remove the magic samples as if nothing had happened */ @@ -834,13 +806,11 @@ update_filter (SpeexResamplerState * st) } } else if (st->filt_len < old_length) { spx_uint32_t i; - /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic" samples so they can be used directly as input the next time(s) */ for (i = 0; i < st->nb_channels; i++) { spx_uint32_t j; spx_uint32_t old_magic = st->magic_samples[i]; - st->magic_samples[i] = (old_length - st->filt_len) / 2; /* We must copy some of the memory that's no longer used */ /* Copy data going backward */ @@ -853,7 +823,7 @@ update_filter (SpeexResamplerState * st) } -SpeexResamplerState * +EXPORT SpeexResamplerState * speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) { @@ -861,14 +831,13 @@ speex_resampler_init (spx_uint32_t nb_channels, spx_uint32_t in_rate, out_rate, quality, err); } -SpeexResamplerState * +EXPORT SpeexResamplerState * speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) { spx_uint32_t i; SpeexResamplerState *st; - if (quality > 10 || quality < 0) { if (err) *err = RESAMPLER_ERR_INVALID_ARG; @@ -893,6 +862,12 @@ speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num, st->in_stride = 1; st->out_stride = 1; +#ifdef FIXED_POINT + st->buffer_size = 160; +#else + st->buffer_size = 160; +#endif + /* Per channel data */ st->last_sample = (spx_int32_t *) speex_alloc (nb_channels * sizeof (int)); st->magic_samples = (spx_uint32_t *) speex_alloc (nb_channels * sizeof (int)); @@ -916,7 +891,7 @@ speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num, return st; } -void +EXPORT void speex_resampler_destroy (SpeexResamplerState * st) { speex_free (st->mem); @@ -927,249 +902,193 @@ speex_resampler_destroy (SpeexResamplerState * st) speex_free (st); } - - static int speex_resampler_process_native (SpeexResamplerState * st, - spx_uint32_t channel_index, const spx_word16_t * in, spx_uint32_t * in_len, - spx_word16_t * out, spx_uint32_t * out_len) + spx_uint32_t channel_index, spx_uint32_t * in_len, spx_word16_t * out, + spx_uint32_t * out_len) { int j = 0; - int N = st->filt_len; + const int N = st->filt_len; int out_sample = 0; - spx_word16_t *mem; - spx_uint32_t tmp_out_len = 0; + spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; + spx_uint32_t ilen; - mem = st->mem + channel_index * st->mem_alloc_size; st->started = 1; - /* Handle the case where we have samples left from a reduction in filter length */ - if (st->magic_samples[channel_index]) { - int istride_save; - spx_uint32_t tmp_in_len; - spx_uint32_t tmp_magic; - - istride_save = st->in_stride; - tmp_in_len = st->magic_samples[channel_index]; - tmp_out_len = *out_len; - /* magic_samples needs to be set to zero to avoid infinite recursion */ - tmp_magic = st->magic_samples[channel_index]; - st->magic_samples[channel_index] = 0; - st->in_stride = 1; - speex_resampler_process_native (st, channel_index, mem + N - 1, &tmp_in_len, - out, &tmp_out_len); - st->in_stride = istride_save; - /*speex_warning_int("extra samples:", tmp_out_len); */ - /* If we couldn't process all "magic" input samples, save the rest for next time */ - if (tmp_in_len < tmp_magic) { - spx_uint32_t i; - - st->magic_samples[channel_index] = tmp_magic - tmp_in_len; - for (i = 0; i < st->magic_samples[channel_index]; i++) - mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len]; - } - out += tmp_out_len * st->out_stride; - *out_len -= tmp_out_len; - } - /* Call the right resampler through the function ptr */ - out_sample = st->resampler_ptr (st, channel_index, in, in_len, out, out_len); + out_sample = st->resampler_ptr (st, channel_index, mem, in_len, out, out_len); if (st->last_sample[channel_index] < (spx_int32_t) * in_len) *in_len = st->last_sample[channel_index]; - *out_len = out_sample + tmp_out_len; + *out_len = out_sample; st->last_sample[channel_index] -= *in_len; - for (j = 0; j < N - 1 - (spx_int32_t) * in_len; j++) - mem[j] = mem[j + *in_len]; - if (in != NULL) { - for (; j < N - 1; j++) - mem[j] = in[st->in_stride * (j + *in_len - N + 1)]; - } else { - for (; j < N - 1; j++) - mem[j] = 0; - } + ilen = *in_len; + + for (j = 0; j < N - 1; ++j) + mem[j] = mem[j + ilen]; + return RESAMPLER_ERR_SUCCESS; } -#define FIXED_STACK_ALLOC 1024 - -#ifdef FIXED_POINT -int -speex_resampler_process_float (SpeexResamplerState * st, - spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, - float *out, spx_uint32_t * out_len) +static int +speex_resampler_magic (SpeexResamplerState * st, spx_uint32_t channel_index, + spx_word16_t ** out, spx_uint32_t out_len) { - spx_uint32_t i; - int istride_save, ostride_save; + spx_uint32_t tmp_in_len = st->magic_samples[channel_index]; + spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; + const int N = st->filt_len; -#ifdef VAR_ARRAYS - spx_word16_t x[*in_len]; - spx_word16_t y[*out_len]; + speex_resampler_process_native (st, channel_index, &tmp_in_len, *out, + &out_len); - /*VARDECL(spx_word16_t *x); - VARDECL(spx_word16_t *y); - ALLOC(x, *in_len, spx_word16_t); - ALLOC(y, *out_len, spx_word16_t); */ - istride_save = st->in_stride; - ostride_save = st->out_stride; - if (in != NULL) { - for (i = 0; i < *in_len; i++) - x[i] = WORD2INT (in[i * st->in_stride]); - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, x, in_len, y, out_len); - } else { - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, NULL, in_len, y, - out_len); - } - st->in_stride = istride_save; - st->out_stride = ostride_save; - for (i = 0; i < *out_len; i++) - out[i * st->out_stride] = y[i]; -#else - spx_word16_t x[FIXED_STACK_ALLOC]; - spx_word16_t y[FIXED_STACK_ALLOC]; - spx_uint32_t ilen = *in_len, olen = *out_len; + st->magic_samples[channel_index] -= tmp_in_len; - istride_save = st->in_stride; - ostride_save = st->out_stride; - while (ilen && olen) { - spx_uint32_t ichunk, ochunk; - - ichunk = ilen; - ochunk = olen; - if (ichunk > FIXED_STACK_ALLOC) - ichunk = FIXED_STACK_ALLOC; - if (ochunk > FIXED_STACK_ALLOC) - ochunk = FIXED_STACK_ALLOC; - if (in != NULL) { - for (i = 0; i < ichunk; i++) - x[i] = WORD2INT (in[i * st->in_stride]); - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, x, &ichunk, y, - &ochunk); - } else { - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, NULL, &ichunk, y, - &ochunk); - } - st->in_stride = istride_save; - st->out_stride = ostride_save; - for (i = 0; i < ochunk; i++) - out[i * st->out_stride] = y[i]; - out += ochunk; - in += ichunk; - ilen -= ichunk; - olen -= ochunk; + /* If we couldn't process all "magic" input samples, save the rest for next time */ + if (st->magic_samples[channel_index]) { + spx_uint32_t i; + for (i = 0; i < st->magic_samples[channel_index]; i++) + mem[N - 1 + i] = mem[N - 1 + i + tmp_in_len]; } - *in_len -= ilen; - *out_len -= olen; -#endif - return RESAMPLER_ERR_SUCCESS; + *out += out_len * st->out_stride; + return out_len; } -int +#ifdef FIXED_POINT +EXPORT int speex_resampler_process_int (SpeexResamplerState * st, spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out, spx_uint32_t * out_len) -{ - return speex_resampler_process_native (st, channel_index, in, in_len, out, - out_len); -} #else -int +EXPORT int speex_resampler_process_float (SpeexResamplerState * st, spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len) +#endif { - return speex_resampler_process_native (st, channel_index, in, in_len, out, - out_len); + int j; + spx_uint32_t ilen = *in_len; + spx_uint32_t olen = *out_len; + spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; + const int filt_offs = st->filt_len - 1; + const spx_uint32_t xlen = st->mem_alloc_size - filt_offs; + const int istride = st->in_stride; + + if (st->magic_samples[channel_index]) + olen -= speex_resampler_magic (st, channel_index, &out, olen); + if (!st->magic_samples[channel_index]) { + while (ilen && olen) { + spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; + spx_uint32_t ochunk = olen; + + if (in) { + for (j = 0; j < ichunk; ++j) + x[j + filt_offs] = in[j * istride]; + } else { + for (j = 0; j < ichunk; ++j) + x[j + filt_offs] = 0; + } + speex_resampler_process_native (st, channel_index, &ichunk, out, &ochunk); + ilen -= ichunk; + olen -= ochunk; + out += ochunk * st->out_stride; + if (in) + in += ichunk * istride; + } + } + *in_len -= ilen; + *out_len -= olen; + return RESAMPLER_ERR_SUCCESS; } -int +#ifdef FIXED_POINT +EXPORT int +speex_resampler_process_float (SpeexResamplerState * st, + spx_uint32_t channel_index, const float *in, spx_uint32_t * in_len, + float *out, spx_uint32_t * out_len) +#else +EXPORT int speex_resampler_process_int (SpeexResamplerState * st, spx_uint32_t channel_index, const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out, spx_uint32_t * out_len) +#endif { - spx_uint32_t i; - int istride_save, ostride_save; - + int j; + const int istride_save = st->in_stride; + const int ostride_save = st->out_stride; + spx_uint32_t ilen = *in_len; + spx_uint32_t olen = *out_len; + spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; + const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1); #ifdef VAR_ARRAYS - spx_word16_t x[*in_len]; - spx_word16_t y[*out_len]; - - /*VARDECL(spx_word16_t *x); - VARDECL(spx_word16_t *y); - ALLOC(x, *in_len, spx_word16_t); - ALLOC(y, *out_len, spx_word16_t); */ - istride_save = st->in_stride; - ostride_save = st->out_stride; - if (in != NULL) { - for (i = 0; i < *in_len; i++) - x[i] = in[i * st->in_stride]; - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, x, in_len, y, out_len); - } else { - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, NULL, in_len, y, - out_len); - } - st->in_stride = istride_save; - st->out_stride = ostride_save; - for (i = 0; i < *out_len; i++) - out[i * st->out_stride] = WORD2INT (y[i]); + const unsigned int ylen = + (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC; + VARDECL (spx_word16_t * ystack); + ALLOC (ystack, ylen, spx_word16_t); #else - spx_word16_t x[FIXED_STACK_ALLOC]; - spx_word16_t y[FIXED_STACK_ALLOC]; - spx_uint32_t ilen = *in_len, olen = *out_len; + const unsigned int ylen = FIXED_STACK_ALLOC; + spx_word16_t ystack[FIXED_STACK_ALLOC]; +#endif + + st->out_stride = 1; - istride_save = st->in_stride; - ostride_save = st->out_stride; while (ilen && olen) { - spx_uint32_t ichunk, ochunk; - - ichunk = ilen; - ochunk = olen; - if (ichunk > FIXED_STACK_ALLOC) - ichunk = FIXED_STACK_ALLOC; - if (ochunk > FIXED_STACK_ALLOC) - ochunk = FIXED_STACK_ALLOC; - if (in != NULL) { - for (i = 0; i < ichunk; i++) - x[i] = in[i * st->in_stride]; - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, x, &ichunk, y, - &ochunk); + spx_word16_t *y = ystack; + spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; + spx_uint32_t ochunk = (olen > ylen) ? ylen : olen; + spx_uint32_t omagic = 0; + + if (st->magic_samples[channel_index]) { + omagic = speex_resampler_magic (st, channel_index, &y, ochunk); + ochunk -= omagic; + olen -= omagic; + } + if (!st->magic_samples[channel_index]) { + if (in) { + for (j = 0; j < ichunk; ++j) +#ifdef FIXED_POINT + x[j + st->filt_len - 1] = WORD2INT (in[j * istride_save]); +#else + x[j + st->filt_len - 1] = in[j * istride_save]; +#endif + } else { + for (j = 0; j < ichunk; ++j) + x[j + st->filt_len - 1] = 0; + } + + speex_resampler_process_native (st, channel_index, &ichunk, y, &ochunk); } else { - st->in_stride = st->out_stride = 1; - speex_resampler_process_native (st, channel_index, NULL, &ichunk, y, - &ochunk); + ichunk = 0; + ochunk = 0; } - st->in_stride = istride_save; - st->out_stride = ostride_save; - for (i = 0; i < ochunk; i++) - out[i * st->out_stride] = WORD2INT (y[i]); - out += ochunk; - in += ichunk; + + for (j = 0; j < ochunk + omagic; ++j) +#ifdef FIXED_POINT + out[j * ostride_save] = ystack[j]; +#else + out[j * ostride_save] = WORD2INT (ystack[j]); +#endif + ilen -= ichunk; olen -= ochunk; + out += (ochunk + omagic) * ostride_save; + if (in) + in += ichunk * istride_save; } + st->out_stride = ostride_save; *in_len -= ilen; *out_len -= olen; -#endif + return RESAMPLER_ERR_SUCCESS; } -#endif -int +EXPORT int speex_resampler_process_interleaved_float (SpeexResamplerState * st, const float *in, spx_uint32_t * in_len, float *out, spx_uint32_t * out_len) { spx_uint32_t i; int istride_save, ostride_save; spx_uint32_t bak_len = *out_len; - istride_save = st->in_stride; ostride_save = st->out_stride; st->in_stride = st->out_stride = st->nb_channels; @@ -1185,8 +1104,7 @@ speex_resampler_process_interleaved_float (SpeexResamplerState * st, return RESAMPLER_ERR_SUCCESS; } - -int +EXPORT int speex_resampler_process_interleaved_int (SpeexResamplerState * st, const spx_int16_t * in, spx_uint32_t * in_len, spx_int16_t * out, spx_uint32_t * out_len) @@ -1194,7 +1112,6 @@ speex_resampler_process_interleaved_int (SpeexResamplerState * st, spx_uint32_t i; int istride_save, ostride_save; spx_uint32_t bak_len = *out_len; - istride_save = st->in_stride; ostride_save = st->out_stride; st->in_stride = st->out_stride = st->nb_channels; @@ -1210,7 +1127,7 @@ speex_resampler_process_interleaved_int (SpeexResamplerState * st, return RESAMPLER_ERR_SUCCESS; } -int +EXPORT int speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate, spx_uint32_t out_rate) { @@ -1218,7 +1135,7 @@ speex_resampler_set_rate (SpeexResamplerState * st, spx_uint32_t in_rate, out_rate); } -void +EXPORT void speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate, spx_uint32_t * out_rate) { @@ -1226,14 +1143,13 @@ speex_resampler_get_rate (SpeexResamplerState * st, spx_uint32_t * in_rate, *out_rate = st->out_rate; } -int +EXPORT int speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate) { spx_uint32_t fact; spx_uint32_t old_den; spx_uint32_t i; - if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den) return RESAMPLER_ERR_SUCCESS; @@ -1265,7 +1181,7 @@ speex_resampler_set_rate_frac (SpeexResamplerState * st, spx_uint32_t ratio_num, return RESAMPLER_ERR_SUCCESS; } -void +EXPORT void speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num, spx_uint32_t * ratio_den) { @@ -1273,7 +1189,7 @@ speex_resampler_get_ratio (SpeexResamplerState * st, spx_uint32_t * ratio_num, *ratio_den = st->den_rate; } -int +EXPORT int speex_resampler_set_quality (SpeexResamplerState * st, int quality) { if (quality > 10 || quality < 0) @@ -1286,73 +1202,71 @@ speex_resampler_set_quality (SpeexResamplerState * st, int quality) return RESAMPLER_ERR_SUCCESS; } -void +EXPORT void speex_resampler_get_quality (SpeexResamplerState * st, int *quality) { *quality = st->quality; } -void +EXPORT void speex_resampler_set_input_stride (SpeexResamplerState * st, spx_uint32_t stride) { st->in_stride = stride; } -void +EXPORT void speex_resampler_get_input_stride (SpeexResamplerState * st, spx_uint32_t * stride) { *stride = st->in_stride; } -void +EXPORT void speex_resampler_set_output_stride (SpeexResamplerState * st, spx_uint32_t stride) { st->out_stride = stride; } -void +EXPORT void speex_resampler_get_output_stride (SpeexResamplerState * st, spx_uint32_t * stride) { *stride = st->out_stride; } -int +EXPORT int speex_resampler_get_input_latency (SpeexResamplerState * st) { return st->filt_len / 2; } -int +EXPORT int speex_resampler_get_output_latency (SpeexResamplerState * st) { return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate; } -int +EXPORT int speex_resampler_skip_zeros (SpeexResamplerState * st) { spx_uint32_t i; - for (i = 0; i < st->nb_channels; i++) st->last_sample[i] = st->filt_len / 2; return RESAMPLER_ERR_SUCCESS; } -int +EXPORT int speex_resampler_reset_mem (SpeexResamplerState * st) { spx_uint32_t i; - for (i = 0; i < st->nb_channels * (st->filt_len - 1); i++) st->mem[i] = 0; return RESAMPLER_ERR_SUCCESS; } -const char * +EXPORT const char * speex_resampler_strerror (int err) { switch (err) { -- cgit v1.2.1