/* * idctmmx32.cpp * * Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com * * This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter * * FlasKMPEG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * FlasKMPEG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ // MMX32 iDCT algorithm (IEEE-1180 compliant) :: idct_mmx32() // // MPEG2AVI // -------- // v0.16B33 initial release // // This was one of the harder pieces of work to code. // Intel's app-note focuses on the numerical issues of the algorithm, but // assumes the programmer is familiar with IDCT mathematics, leaving the // form of the complete function up to the programmer's imagination. // // ALGORITHM OVERVIEW // ------------------ // I played around with the code for quite a few hours. I came up // with *A* working IDCT algorithm, however I'm not sure whether my routine // is "the correct one." But rest assured, my code passes all six IEEE // accuracy tests with plenty of margin. // // My IDCT algorithm consists of 4 steps: // // 1) IDCT-row transformation (using the IDCT-row function) on all 8 rows // This yields an intermediate 8x8 matrix. // // 2) intermediate matrix transpose (mandatory) // // 3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate // matrix. The output is the final-result, in transposed form. // // 4) post-transformation matrix transpose // (not necessary if the input-data is already transposed, this could // be done during the MPEG "zig-zag" scan, but since my algorithm // requires at least one transpose operation, why not re-use the // transpose-code.) // // Although the (1st) and (3rd) steps use the SAME row-transform operation, // the (3rd) step uses different shift&round constants (explained later.) // // Also note that the intermediate transpose (2) would not be neccessary, // if the subsequent operation were a iDCT-column transformation. Since // we only have the iDCT-row transform, we transpose the intermediate // matrix and use the iDCT-row transform a 2nd time. // // I had to change some constants/variables for my method to work : // // As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are // wrong. Not surprising since I'm not using a true column-transform // operation, but the row-transform operation (as mentioned earlier.) // round_inv_col[], which is given as "4 short" values, should have the // same dimensions as round_inv_row[]. The corrected variables are // shown. // // Intel's code defines a different table for each each row operation. // The tables given are 0/4, 1/7, 2/6, and 5/3. My code only uses row#0. // Using the other rows messes up the overall transform. // // IMPLEMENTATION DETAILs // ---------------------- // // I divided the algorithm's work into two subroutines, // 1) idct_mmx32_rows() - transforms 8 rows, then transpose // 2) idct_mmx32_cols() - transforms 8 rows, then transpose // yields final result ("drop-in" direct replacement for INT32 IDCT) // // The 2nd function is a clone of the 1st, with changes made only to the // shift&rounding instructions. // // In the 1st function (rows), the shift & round instructions use // SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[]) // // In the 2nd function (cols)-> r_inv_col[], and // SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[]) // // Each function contains an integrated transpose-operator, which comes // AFTER the primary transformation operation. In the future, I'll optimize // the code to do more of the transpose-work "in-place". Right now, I've // left the code as two subroutines and a main calling function, so other // people can read the code more easily. // // liaor@umcc.ais.org http://members.tripod.com/~liaor // //;============================================================================= //; //; AP-922 http://developer.intel.com/vtune/cbts/strmsimd //; These examples contain code fragments for first stage iDCT 8x8 //; (for rows) and first stage DCT 8x8 (for columns) //; //;============================================================================= /* mword typedef qword qword ptr equ mword ptr */ #include #define BITS_INV_ACC 4 //; 4 or 5 for IEEE // 5 yields higher accuracy, but lessens dynamic range on the input matrix #define SHIFT_INV_ROW (16 - BITS_INV_ACC) #define SHIFT_INV_COL (1 + BITS_INV_ACC +14 ) // changed from Intel's val) //#define SHIFT_INV_COL (1 + BITS_INV_ACC ) #define RND_INV_ROW (1 << (SHIFT_INV_ROW-1)) #define RND_INV_COL (1 << (SHIFT_INV_COL-1)) #define RND_INV_CORR (RND_INV_COL - 1) //; correction -1.0 and round //#define RND_INV_ROW (1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1) //#define RND_INV_COL (16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1) //.data //Align 16 const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW}; const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL}; const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR }; //const static short r_inv_col[4] = // {RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL}; //const static short r_inv_corr[4] = // {RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR}; /* constants for the forward DCT //#define BITS_FRW_ACC 3 //; 2 or 3 for accuracy //#define SHIFT_FRW_COL BITS_FRW_ACC //#define SHIFT_FRW_ROW (BITS_FRW_ACC + 17) //#define RND_FRW_ROW (262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1) const static __int64 one_corr = 0x0001000100010001; const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW }; //const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5 //const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5 //const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5 //const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5 //const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5 //concatenated table, for forward DCT transformation const static short tg_all_16[] = { 13036, 13036, 13036, 13036, // tg * (2<<16) + 0.5 27146, 27146, 27146, 27146, //tg * (2<<16) + 0.5 -21746, -21746, -21746, -21746, // tg * (2<<16) + 0.5 -19195, -19195, -19195, -19195, //cos * (2<<16) + 0.5 23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5 #define tg_1_16 (tg_all_16 + 0) #define tg_2_16 (tg_all_16 + 8) #define tg_3_16 (tg_all_16 + 16) #define cos_4_16 (tg_all_16 + 24) #define ocos_4_16 (tg_all_16 + 32) */ /* ;============================================================================= ; ; The first stage iDCT 8x8 - inverse DCTs of rows ; ;----------------------------------------------------------------------------- ; The 8-point inverse DCT direct algorithm ;----------------------------------------------------------------------------- ; ; static const short w[32] = { ; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16), ; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16), ; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16), ; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16), ; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16), ; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16), ; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16), ; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) }; ; ; #define DCT_8_INV_ROW(x, y) ;{ ; int a0, a1, a2, a3, b0, b1, b2, b3; ; ; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3]; ; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7]; ; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11]; ; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15]; ; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19]; ; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23]; ; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27]; ; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31]; ; ; y[0] = SHIFT_ROUND ( a0 + b0 ); ; y[1] = SHIFT_ROUND ( a1 + b1 ); ; y[2] = SHIFT_ROUND ( a2 + b2 ); ; y[3] = SHIFT_ROUND ( a3 + b3 ); ; y[4] = SHIFT_ROUND ( a3 - b3 ); ; y[5] = SHIFT_ROUND ( a2 - b2 ); ; y[6] = SHIFT_ROUND ( a1 - b1 ); ; y[7] = SHIFT_ROUND ( a0 - b0 ); ;} ; ;----------------------------------------------------------------------------- ; ; In this implementation the outputs of the iDCT-1D are multiplied ; for rows 0,4 - by cos_4_16, ; for rows 1,7 - by cos_1_16, ; for rows 2,6 - by cos_2_16, ; for rows 3,5 - by cos_3_16 ; and are shifted to the left for better accuracy ; ; For the constants used, ; FIX(float_const) = (short) (float_const * (1<<15) + 0.5) ; ;============================================================================= ;============================================================================= IF _MMX ; MMX code ;============================================================================= //; Table for rows 0,4 - constants are multiplied by cos_4_16 const short tab_i_04[] = { 16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00 21407, 8867, 8867, -21407, // w07 w05 w03 w01 16384, -16384, 16384, 16384, //; w14 w12 w10 w08 -8867, 21407, -21407, -8867, //; w15 w13 w11 w09 22725, 12873, 19266, -22725, //; w22 w20 w18 w16 19266, 4520, -4520, -12873, //; w23 w21 w19 w17 12873, 4520, 4520, 19266, //; w30 w28 w26 w24 -22725, 19266, -12873, -22725 };//w31 w29 w27 w25 //; Table for rows 1,7 - constants are multiplied by cos_1_16 const short tab_i_17[] = { 22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00 29692, 12299, 12299, -29692, // ; w07 w05 w03 w01 22725, -22725, 22725, 22725, //; w14 w12 w10 w08 -12299, 29692, -29692, -12299, //; w15 w13 w11 w09 31521, 17855, 26722, -31521, //; w22 w20 w18 w16 26722, 6270, -6270, -17855, //; w23 w21 w19 w17 17855, 6270, 6270, 26722, //; w30 w28 w26 w24 -31521, 26722, -17855, -31521}; // w31 w29 w27 w25 //; Table for rows 2,6 - constants are multiplied by cos_2_16 const short tab_i_26[] = { 21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00 27969, 11585, 11585, -27969, // ; w07 w05 w03 w01 21407, -21407, 21407, 21407, // ; w14 w12 w10 w08 -11585, 27969, -27969, -11585, // ;w15 w13 w11 w09 29692, 16819, 25172, -29692, // ;w22 w20 w18 w16 25172, 5906, -5906, -16819, // ;w23 w21 w19 w17 16819, 5906, 5906, 25172, // ;w30 w28 w26 w24 -29692, 25172, -16819, -29692}; // ;w31 w29 w27 w25 //; Table for rows 3,5 - constants are multiplied by cos_3_16 const short tab_i_35[] = { 19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00 25172, 10426, 10426, -25172, //; w07 w05 w03 w01 19266, -19266, 19266, 19266, //; w14 w12 w10 w08 -10426, 25172, -25172, -10426, //; w15 w13 w11 w09 26722, 15137, 22654, -26722, //; w22 w20 w18 w16 22654, 5315, -5315, -15137, //; w23 w21 w19 w17 15137, 5315, 5315, 22654, //; w30 w28 w26 w24 -26722, 22654, -15137, -26722}; //; w31 w29 w27 w25 */ // CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order ) // // In our implementation, however, we only use row0 ! // static const short tab_i_01234567[] = { //row0, this row is required 16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00 21407, 8867, 8867, -21407, // w07 w05 w03 w01 16384, -16384, 16384, 16384, //; w14 w12 w10 w08 -8867, 21407, -21407, -8867, //; w15 w13 w11 w09 22725, 12873, 19266, -22725, //; w22 w20 w18 w16 19266, 4520, -4520, -12873, //; w23 w21 w19 w17 12873, 4520, 4520, 19266, //; w30 w28 w26 w24 -22725, 19266, -12873, -22725, //w31 w29 w27 w25 // the rest of these rows (1-7), aren't used ! //row1 22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00 29692, 12299, 12299, -29692, // ; w07 w05 w03 w01 22725, -22725, 22725, 22725, //; w14 w12 w10 w08 -12299, 29692, -29692, -12299, //; w15 w13 w11 w09 31521, 17855, 26722, -31521, //; w22 w20 w18 w16 26722, 6270, -6270, -17855, //; w23 w21 w19 w17 17855, 6270, 6270, 26722, //; w30 w28 w26 w24 -31521, 26722, -17855, -31521, // w31 w29 w27 w25 //row2 21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00 27969, 11585, 11585, -27969, // ; w07 w05 w03 w01 21407, -21407, 21407, 21407, // ; w14 w12 w10 w08 -11585, 27969, -27969, -11585, // ;w15 w13 w11 w09 29692, 16819, 25172, -29692, // ;w22 w20 w18 w16 25172, 5906, -5906, -16819, // ;w23 w21 w19 w17 16819, 5906, 5906, 25172, // ;w30 w28 w26 w24 -29692, 25172, -16819, -29692, // ;w31 w29 w27 w25 //row3 19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00 25172, 10426, 10426, -25172, //; w07 w05 w03 w01 19266, -19266, 19266, 19266, //; w14 w12 w10 w08 -10426, 25172, -25172, -10426, //; w15 w13 w11 w09 26722, 15137, 22654, -26722, //; w22 w20 w18 w16 22654, 5315, -5315, -15137, //; w23 w21 w19 w17 15137, 5315, 5315, 22654, //; w30 w28 w26 w24 -26722, 22654, -15137, -26722, //; w31 w29 w27 w25 //row4 16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00 21407, 8867, 8867, -21407, // w07 w05 w03 w01 16384, -16384, 16384, 16384, //; w14 w12 w10 w08 -8867, 21407, -21407, -8867, //; w15 w13 w11 w09 22725, 12873, 19266, -22725, //; w22 w20 w18 w16 19266, 4520, -4520, -12873, //; w23 w21 w19 w17 12873, 4520, 4520, 19266, //; w30 w28 w26 w24 -22725, 19266, -12873, -22725, //w31 w29 w27 w25 //row5 19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00 25172, 10426, 10426, -25172, //; w07 w05 w03 w01 19266, -19266, 19266, 19266, //; w14 w12 w10 w08 -10426, 25172, -25172, -10426, //; w15 w13 w11 w09 26722, 15137, 22654, -26722, //; w22 w20 w18 w16 22654, 5315, -5315, -15137, //; w23 w21 w19 w17 15137, 5315, 5315, 22654, //; w30 w28 w26 w24 -26722, 22654, -15137, -26722, //; w31 w29 w27 w25 //row6 21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00 27969, 11585, 11585, -27969, // ; w07 w05 w03 w01 21407, -21407, 21407, 21407, // ; w14 w12 w10 w08 -11585, 27969, -27969, -11585, // ;w15 w13 w11 w09 29692, 16819, 25172, -29692, // ;w22 w20 w18 w16 25172, 5906, -5906, -16819, // ;w23 w21 w19 w17 16819, 5906, 5906, 25172, // ;w30 w28 w26 w24 -29692, 25172, -16819, -29692, // ;w31 w29 w27 w25 //row7 22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00 29692, 12299, 12299, -29692, // ; w07 w05 w03 w01 22725, -22725, 22725, 22725, //; w14 w12 w10 w08 -12299, 29692, -29692, -12299, //; w15 w13 w11 w09 31521, 17855, 26722, -31521, //; w22 w20 w18 w16 26722, 6270, -6270, -17855, //; w23 w21 w19 w17 17855, 6270, 6270, 26722, //; w30 w28 w26 w24 -31521, 26722, -17855, -31521}; // w31 w29 w27 w25 #define INP eax // pointer to (short *blk) #define OUT ecx // pointer to output (temporary store space qwTemp[]) #define TABLE ebx // pointer to tab_i_01234567[] #define round_inv_row edx #define round_inv_col edx #define ROW_STRIDE 8 // for 8x8 matrix transposer // private variables and functions //temporary storage space, 8x8 of shorts __inline static void idct_mmx32_rows( short *blk ); // transform rows __inline static void idct_mmx32_cols( short *blk ); // transform "columns" // the "column" transform actually transforms rows, it is // identical to the row-transform except for the ROUNDING // and SHIFTING coefficients. static void idct_mmx32_rows( short *blk ) // transform all 8 rows of 8x8 iDCT block { int x; short qwTemp[64]; short *out = &qwTemp[0]; short *inptr = blk; // this subroutine performs two operations // 1) iDCT row transform // for( i = 0; i < 8; ++ i) // DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] ); // // 2) transpose the matrix (which was stored in qwTemp[]) // qwTemp[] -> [8x8 matrix transpose] -> blk[] for (x=0; x<8; x++) { // transform one row per iteration movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0 movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4 movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0 movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00 punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0 // ---------- movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0 punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0 movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01 punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2 pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00 movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2 movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16 punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2 pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01 punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1 pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08 punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3 movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17 pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16 paddd_m2r(*(r_inv_row), mm3);// +rounder pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17 pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09 paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0) pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24 movq_r2r(mm3, mm4); // 4 ; a1 a0 pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25 paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0) paddd_m2r(*(r_inv_row), mm0);// +rounder psubd_r2r(mm1, mm3); // a1-b1 a0-b0 psrad_i2r(SHIFT_INV_ROW, mm3); // y6=a1-b1 y7=a0-b0 paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0 paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2) psrad_i2r(SHIFT_INV_ROW, mm1); // y1=a1+b1 y0=a0+b0 paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2) movq_r2r(mm0, mm4); // 4 ; a3 a2 paddd_r2r(mm5, mm0); // a3+b3 a2+b2 psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2 psrad_i2r(SHIFT_INV_ROW, mm4); // y4=a3-b3 y5=a2-b2 psrad_i2r(SHIFT_INV_ROW, mm0); // y3=a3+b3 y2=a2+b2 packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5 packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0 movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5 psrld_i2r(16, mm4); // 0 y6 0 y4 movq_r2m(mm1, *(out)); // 1 ; save y3 y2 y1 y0 pslld_i2r(16, mm7); // y7 0 y5 0 por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4 // begin processing row 1 movq_r2m(mm7, *(out+4)); // 7 ; save y7 y6 y5 y4 inptr += 8; out += 8; } // done with the iDCT row-transformation // now we have to transpose the output 8x8 matrix // 8x8 (OUT) -> 8x8't' (IN) // the transposition is implemented as 4 sub-operations. // 1) transpose upper-left quad // 2) transpose lower-right quad // 3) transpose lower-left quad // 4) transpose upper-right quad // mm0 = 1st row [ A B C D ] row1 // mm1 = 2nd row [ E F G H ] 2 // mm2 = 3rd row [ I J K L ] 3 // mm3 = 4th row [ M N O P ] 4 // 1) transpose upper-left quad out = &qwTemp[0]; movq_m2r(*(out + ROW_STRIDE * 0), mm0); movq_m2r(*(out + ROW_STRIDE * 1), mm1); movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D] movq_m2r(*(out + ROW_STRIDE * 2), mm2); punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5] movq_m2r(*(out + ROW_STRIDE * 3), mm3); punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7] movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13] punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15] movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5] inptr = blk; punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12] movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7] punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13] movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); // store row 1 punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14] // begin reading next quadrant (lower-right) movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0); punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15] movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); // store row 3 movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D] movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); // store row 2 movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1); movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); // store row 4 punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5] // 2) transpose lower-right quadrant // movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8] // movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8] // movq mm4, mm0; // mm4 = copy of row1[A B C D] movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2); // punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5] punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7] movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3); movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13] movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5] punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15] movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7] punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12] punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13] ; // slot movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); // store row 1 punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14] movq_m2r(*(out + ROW_STRIDE * 4 ), mm0); punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15] movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); // store row 3 movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D] movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); // store row 2 ; // slot movq_m2r(*(out + ROW_STRIDE * 5 ), mm1); ; // slot movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); // store row 4 punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5] // 3) transpose lower-left // movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ] // movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ] // movq mm4, mm0; // mm4 = copy of row1[A B C D] movq_m2r(*(out + ROW_STRIDE * 6 ), mm2); // punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5] punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7] movq_m2r(*(out + ROW_STRIDE * 7 ), mm3); movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13] movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5] punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15] movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7] punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12] punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13] ;//slot movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); // store row 1 punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14] // begin reading next quadrant (upper-right) movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0); punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15] movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); // store row 3 movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D] movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); // store row 2 movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1); movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); // store row 4 punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5] // 2) transpose lower-right quadrant // movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8] // movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8] // movq mm4, mm0; // mm4 = copy of row1[A B C D] movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2); // punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5] punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7] movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3); movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13] movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5] punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15] movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7] punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12] punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13] ; // slot movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); // store row 1 punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14] movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); // store row 2 punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15] movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); // store row 3 ; // slot movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); // store row 4 ; // slot } static void idct_mmx32_cols( short *blk ) // transform all 8 cols of 8x8 iDCT block { int x; short *inptr = blk; // Despite the function's name, the matrix is transformed // row by row. This function is identical to idct_mmx32_rows(), // except for the SHIFT amount and ROUND_INV amount. // this subroutine performs two operations // 1) iDCT row transform // for( i = 0; i < 8; ++ i) // DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] ); // // 2) transpose the matrix (which was stored in qwTemp[]) // qwTemp[] -> [8x8 matrix transpose] -> blk[] for (x=0; x<8; x++) { // transform one row per iteration movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0 movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4 movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0 movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00 punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0 // ---------- movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0 punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0 movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01 punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2 pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00 movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2 movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16 punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2 pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01 punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1 pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08 punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3 movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17 pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16 paddd_m2r(*(r_inv_col), mm3);// +rounder pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17 pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09 paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0) pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24 movq_r2r(mm3, mm4); // 4 ; a1 a0 pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25 paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0) paddd_m2r(*(r_inv_col), mm0);// +rounder psubd_r2r(mm1, mm3); // a1-b1 a0-b0 psrad_i2r(SHIFT_INV_COL, mm3); // y6=a1-b1 y7=a0-b0 paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0 paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2) psrad_i2r(SHIFT_INV_COL, mm1); // y1=a1+b1 y0=a0+b0 paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2) movq_r2r(mm0, mm4); // 4 ; a3 a2 paddd_r2r(mm5, mm0); // a3+b3 a2+b2 psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2 psrad_i2r(SHIFT_INV_COL, mm4); // y4=a3-b3 y5=a2-b2 psrad_i2r(SHIFT_INV_COL, mm0); // y3=a3+b3 y2=a2+b2 packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5 packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0 movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5 psrld_i2r(16, mm4); // 0 y6 0 y4 movq_r2m(mm1, *(inptr)); // 1 ; save y3 y2 y1 y0 pslld_i2r(16, mm7); // y7 0 y5 0 por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4 // begin processing row 1 movq_r2m(mm7, *(inptr+4)); // 7 ; save y7 y6 y5 y4 inptr += 8; } // done with the iDCT column-transformation } // // public interface to MMX32 IDCT 8x8 operation // void gst_idct_mmx32_idct( short *blk ) { // 1) iDCT row transformation idct_mmx32_rows( blk ); // 1) transform iDCT row, and transpose // 2) iDCT column transformation idct_mmx32_cols( blk ); // 2) transform iDCT row, and transpose emms(); // restore processor state // all done }