/* 
 *  idctmmx32.cpp 
 *
 *	Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com
 *
 *  This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter
 *	
 *  FlasKMPEG is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2, or (at your option)
 *  any later version.
 *   
 *  FlasKMPEG is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *   
 *  You should have received a copy of the GNU General Public License
 *  along with GNU Make; see the file COPYING.  If not, write to
 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 
 *
 */


/* MMX32 iDCT algorithm  (IEEE-1180 compliant) :: idct_mmx32()
 */
/*
 */
/* MPEG2AVI
 */
/* --------
 */
/*  v0.16B33 initial release
 */
/*
 */
/* This was one of the harder pieces of work to code.
 */
/* Intel's app-note focuses on the numerical issues of the algorithm, but
 */
/* assumes the programmer is familiar with IDCT mathematics, leaving the
 */
/* form of the complete function up to the programmer's imagination.
 */
/*
 */
/*  ALGORITHM OVERVIEW
 */
/*  ------------------
 */
/* I played around with the code for quite a few hours.  I came up
 */
/* with *A* working IDCT algorithm, however I'm not sure whether my routine
 */
/* is "the correct one."  But rest assured, my code passes all six IEEE 
 */
/* accuracy tests with plenty of margin.
 */
/*
 */
/*   My IDCT algorithm consists of 4 steps:
 */
/*
 */
/*   1) IDCT-row transformation (using the IDCT-row function) on all 8 rows
 */
/*      This yields an intermediate 8x8 matrix.
 */
/*
 */
/*   2) intermediate matrix transpose (mandatory)
 */
/*
 */
/*   3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate
 */
/*      matrix.  The output is the final-result, in transposed form.
 */
/*
 */
/*   4) post-transformation matrix transpose 
 */
/*      (not necessary if the input-data is already transposed, this could
 */
/*       be done during the MPEG "zig-zag" scan, but since my algorithm
 */
/*       requires at least one transpose operation, why not re-use the
 */
/*       transpose-code.)
 */
/*
 */
/*   Although the (1st) and (3rd) steps use the SAME row-transform operation,
 */
/*   the (3rd) step uses different shift&round constants (explained later.)
 */
/*
 */
/*   Also note that the intermediate transpose (2) would not be neccessary,
 */
/*   if the subsequent operation were a iDCT-column transformation.  Since
 */
/*   we only have the iDCT-row transform, we transpose the intermediate
 */
/*   matrix and use the iDCT-row transform a 2nd time.
 */
/*
 */
/*   I had to change some constants/variables for my method to work :
 */
/*
 */
/*      As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are
 */
/*      wrong.  Not surprising since I'm not using a true column-transform 
 */
/*      operation, but the row-transform operation (as mentioned earlier.)
 */
/*      round_inv_col[], which is given as "4 short" values, should have the
 */
/*      same dimensions as round_inv_row[].  The corrected variables are 
 */
/*      shown.
 */
/*
 */
/*      Intel's code defines a different table for each each row operation.
 */
/*      The tables given are 0/4, 1/7, 2/6, and 5/3.  My code only uses row#0.
 */
/*      Using the other rows messes up the overall transform.
 */
/*
 */
/*   IMPLEMENTATION DETAILs
 */
/*   ----------------------
 */
/* 
 */
/*   I divided the algorithm's work into two subroutines,
 */
/*    1) idct_mmx32_rows() - transforms 8 rows, then transpose
 */
/*    2) idct_mmx32_cols() - transforms 8 rows, then transpose
 */
/*       yields final result ("drop-in" direct replacement for INT32 IDCT)
 */
/*
 */
/*   The 2nd function is a clone of the 1st, with changes made only to the
 */
/*   shift&rounding instructions.
 */
/*
 */
/*      In the 1st function (rows), the shift & round instructions use 
 */
/*       SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[])
 */
/*
 */
/*      In the 2nd function (cols)-> r_inv_col[], and
 */
/*       SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[])
 */
/*
 */
/*   Each function contains an integrated transpose-operator, which comes
 */
/*   AFTER the primary transformation operation.  In the future, I'll optimize
 */
/*   the code to do more of the transpose-work "in-place".  Right now, I've
 */
/*   left the code as two subroutines and a main calling function, so other
 */
/*   people can read the code more easily.
 */
/*
 */
/*   liaor@umcc.ais.org  http://members.tripod.com/~liaor
 */
/*  
 */


/*;=============================================================================
 */
/*;
 */
/*;  AP-922   http://developer.intel.com/vtune/cbts/strmsimd
 */
/*; These examples contain code fragments for first stage iDCT 8x8
 */
/*; (for rows) and first stage DCT 8x8 (for columns)
 */
/*;
 */
/*;=============================================================================
 */
/*
mword typedef qword
qword ptr equ mword ptr */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <mmx.h>

#define BITS_INV_ACC	4	/*; 4 or 5 for IEEE
 */
	/* 5 yields higher accuracy, but lessens dynamic range on the input matrix
 */
#define SHIFT_INV_ROW	(16 - BITS_INV_ACC)
#define SHIFT_INV_COL	(1 + BITS_INV_ACC +14 )  /* changed from Intel's val)
 */
/*#define SHIFT_INV_COL	(1 + BITS_INV_ACC )
 */

#define RND_INV_ROW		(1 << (SHIFT_INV_ROW-1))
#define RND_INV_COL		(1 << (SHIFT_INV_COL-1)) 
#define RND_INV_CORR	(RND_INV_COL - 1)		/*; correction -1.0 and round
 */
/*#define RND_INV_ROW		(1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1)
 */
/*#define RND_INV_COL		(16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1)
 */


/*.data
 */
/*Align 16
 */
const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW};
const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL};
const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR };

/*const static short r_inv_col[4] = 
 */
/*	{RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL};
 */
/*const static short r_inv_corr[4] =
 */
/*	{RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR};
 */

/* constants for the forward DCT

/*#define BITS_FRW_ACC	3 //; 2 or 3 for accuracy
 */
/*#define SHIFT_FRW_COL	BITS_FRW_ACC
 */
/*#define SHIFT_FRW_ROW	(BITS_FRW_ACC + 17)
 */
/*#define RND_FRW_ROW		(262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1)
 */

const static __int64 one_corr = 0x0001000100010001;
const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW };

/*const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5
 */
/*const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5
 */
/*const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5
 */
/*const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5
 */
/*const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
 */

/*concatenated table, for forward DCT transformation
 */
const static short tg_all_16[] = {
	13036, 13036, 13036, 13036,		/* tg * (2<<16) + 0.5
 */
	27146, 27146, 27146, 27146,		/*tg * (2<<16) + 0.5
 */
	-21746, -21746, -21746, -21746,	/* tg * (2<<16) + 0.5
 */
	-19195, -19195, -19195, -19195,	/*cos * (2<<16) + 0.5
 */
	23170, 23170, 23170, 23170 };	/*cos * (2<<15) + 0.5
 */

#define tg_1_16 (tg_all_16 + 0)
#define tg_2_16 (tg_all_16 + 8)
#define tg_3_16 (tg_all_16 + 16)
#define cos_4_16 (tg_all_16 + 24)
#define ocos_4_16 (tg_all_16 + 32)
*/
/*
;=============================================================================
;
; The first stage iDCT 8x8 - inverse DCTs of rows
;
;-----------------------------------------------------------------------------
; The 8-point inverse DCT direct algorithm
;-----------------------------------------------------------------------------
;
; static const short w[32] = {
; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16),
; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) };
;
; #define DCT_8_INV_ROW(x, y)

;{
; int a0, a1, a2, a3, b0, b1, b2, b3;
;
; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3];
; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7];
; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11];
; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
;
; y[0] = SHIFT_ROUND ( a0 + b0 );
; y[1] = SHIFT_ROUND ( a1 + b1 );
; y[2] = SHIFT_ROUND ( a2 + b2 );
; y[3] = SHIFT_ROUND ( a3 + b3 );
; y[4] = SHIFT_ROUND ( a3 - b3 );
; y[5] = SHIFT_ROUND ( a2 - b2 );
; y[6] = SHIFT_ROUND ( a1 - b1 );
; y[7] = SHIFT_ROUND ( a0 - b0 );
;}
;
;-----------------------------------------------------------------------------
;
; In this implementation the outputs of the iDCT-1D are multiplied
; for rows 0,4 - by cos_4_16,
; for rows 1,7 - by cos_1_16,
; for rows 2,6 - by cos_2_16,
; for rows 3,5 - by cos_3_16
; and are shifted to the left for better accuracy
;
; For the constants used,
; FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
;
;=============================================================================
;=============================================================================
IF _MMX ; MMX code
;=============================================================================

/*; Table for rows 0,4 - constants are multiplied by cos_4_16
 */
const short tab_i_04[] = {
	16384, 16384, 16384, -16384,	/* ; movq-> w06 w04 w02 w00
 */
	21407, 8867, 8867, -21407,		/* w07 w05 w03 w01
 */
	16384, -16384, 16384, 16384,	/*; w14 w12 w10 w08
 */
	-8867, 21407, -21407, -8867,	/*; w15 w13 w11 w09
 */
	22725, 12873, 19266, -22725,	/*; w22 w20 w18 w16
 */
	19266, 4520, -4520, -12873,		/*; w23 w21 w19 w17
 */
	12873, 4520, 4520, 19266,		/*; w30 w28 w26 w24
 */
	-22725, 19266, -12873, -22725 };/*w31 w29 w27 w25
 */

/*; Table for rows 1,7 - constants are multiplied by cos_1_16
 */
const short tab_i_17[] = {
	22725, 22725, 22725, -22725,	/* ; movq-> w06 w04 w02 w00
 */
	29692, 12299, 12299, -29692,	/*	; w07 w05 w03 w01
 */
	22725, -22725, 22725, 22725,	/*; w14 w12 w10 w08
 */
	-12299, 29692, -29692, -12299,	/*; w15 w13 w11 w09
 */
	31521, 17855, 26722, -31521,	/*; w22 w20 w18 w16
 */
	26722, 6270, -6270, -17855,		/*; w23 w21 w19 w17
 */
	17855, 6270, 6270, 26722,		/*; w30 w28 w26 w24
 */
	-31521, 26722, -17855, -31521};	/* w31 w29 w27 w25
 */

/*; Table for rows 2,6 - constants are multiplied by cos_2_16
 */
const short tab_i_26[] = {
	21407, 21407, 21407, -21407,	/* ; movq-> w06 w04 w02 w00
 */
	27969, 11585, 11585, -27969,	/* ; w07 w05 w03 w01
 */
	21407, -21407, 21407, 21407,	/* ; w14 w12 w10 w08
 */
	-11585, 27969, -27969, -11585,	/*  ;w15 w13 w11 w09
 */
	29692, 16819, 25172, -29692, 	/* ;w22 w20 w18 w16
 */
	25172, 5906, -5906, -16819, 	/* ;w23 w21 w19 w17
 */
	16819, 5906, 5906, 25172, 		/* ;w30 w28 w26 w24
 */
	-29692, 25172, -16819, -29692};	/*  ;w31 w29 w27 w25
 */


/*; Table for rows 3,5 - constants are multiplied by cos_3_16
 */
const short tab_i_35[] = {
	19266, 19266, 19266, -19266,	/*; movq-> w06 w04 w02 w00
 */
	25172, 10426, 10426, -25172,	/*; w07 w05 w03 w01
 */
	19266, -19266, 19266, 19266,	/*; w14 w12 w10 w08
 */
	-10426, 25172, -25172, -10426,	/*; w15 w13 w11 w09
 */
	26722, 15137, 22654, -26722,	/*; w22 w20 w18 w16
 */
	22654, 5315, -5315, -15137,		/*; w23 w21 w19 w17
 */
	15137, 5315, 5315, 22654,		/*; w30 w28 w26 w24
 */
	-26722, 22654, -15137, -26722};	/*; w31 w29 w27 w25
 */
*/

/* CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order )
 */
/*
 */
/* In our implementation, however, we only use row0 !
 */
/*
 */
static const short tab_i_01234567[] = {
	/*row0, this row is required
 */
	16384, 16384, 16384, -16384,	/* ; movq-> w06 w04 w02 w00
 */
	21407, 8867, 8867, -21407,		/* w07 w05 w03 w01
 */
	16384, -16384, 16384, 16384,	/*; w14 w12 w10 w08
 */
	-8867, 21407, -21407, -8867,	/*; w15 w13 w11 w09
 */
	22725, 12873, 19266, -22725,	/*; w22 w20 w18 w16
 */
	19266, 4520, -4520, -12873,		/*; w23 w21 w19 w17
 */
	12873, 4520, 4520, 19266,		/*; w30 w28 w26 w24
 */
	-22725, 19266, -12873, -22725,  /*w31 w29 w27 w25
 */

	/* the rest of these rows (1-7), aren't used !
 */

	/*row1
 */
	22725, 22725, 22725, -22725,	/* ; movq-> w06 w04 w02 w00
 */
	29692, 12299, 12299, -29692,	/*	; w07 w05 w03 w01
 */
	22725, -22725, 22725, 22725,	/*; w14 w12 w10 w08
 */
	-12299, 29692, -29692, -12299,	/*; w15 w13 w11 w09
 */
	31521, 17855, 26722, -31521,	/*; w22 w20 w18 w16
 */
	26722, 6270, -6270, -17855,		/*; w23 w21 w19 w17
 */
	17855, 6270, 6270, 26722,		/*; w30 w28 w26 w24
 */
	-31521, 26722, -17855, -31521,	/* w31 w29 w27 w25
 */

	/*row2
 */
	21407, 21407, 21407, -21407,	/* ; movq-> w06 w04 w02 w00
 */
	27969, 11585, 11585, -27969,	/* ; w07 w05 w03 w01
 */
	21407, -21407, 21407, 21407,	/* ; w14 w12 w10 w08
 */
	-11585, 27969, -27969, -11585,	/*  ;w15 w13 w11 w09
 */
	29692, 16819, 25172, -29692, 	/* ;w22 w20 w18 w16
 */
	25172, 5906, -5906, -16819, 	/* ;w23 w21 w19 w17
 */
	16819, 5906, 5906, 25172, 		/* ;w30 w28 w26 w24
 */
	-29692, 25172, -16819, -29692,	/*  ;w31 w29 w27 w25
 */

	/*row3
 */
	19266, 19266, 19266, -19266,	/*; movq-> w06 w04 w02 w00
 */
	25172, 10426, 10426, -25172,	/*; w07 w05 w03 w01
 */
	19266, -19266, 19266, 19266,	/*; w14 w12 w10 w08
 */
	-10426, 25172, -25172, -10426,	/*; w15 w13 w11 w09
 */
	26722, 15137, 22654, -26722,	/*; w22 w20 w18 w16
 */
	22654, 5315, -5315, -15137,		/*; w23 w21 w19 w17
 */
	15137, 5315, 5315, 22654,		/*; w30 w28 w26 w24
 */
	-26722, 22654, -15137, -26722,	/*; w31 w29 w27 w25
 */

	/*row4
 */
	16384, 16384, 16384, -16384,	/* ; movq-> w06 w04 w02 w00
 */
	21407, 8867, 8867, -21407,		/* w07 w05 w03 w01
 */
	16384, -16384, 16384, 16384,	/*; w14 w12 w10 w08
 */
	-8867, 21407, -21407, -8867,	/*; w15 w13 w11 w09
 */
	22725, 12873, 19266, -22725,	/*; w22 w20 w18 w16
 */
	19266, 4520, -4520, -12873,		/*; w23 w21 w19 w17
 */
	12873, 4520, 4520, 19266,		/*; w30 w28 w26 w24
 */
	-22725, 19266, -12873, -22725,  /*w31 w29 w27 w25
 */

	/*row5
 */
	19266, 19266, 19266, -19266,	/*; movq-> w06 w04 w02 w00
 */
	25172, 10426, 10426, -25172,	/*; w07 w05 w03 w01
 */
	19266, -19266, 19266, 19266,	/*; w14 w12 w10 w08
 */
	-10426, 25172, -25172, -10426,	/*; w15 w13 w11 w09
 */
	26722, 15137, 22654, -26722,	/*; w22 w20 w18 w16
 */
	22654, 5315, -5315, -15137,		/*; w23 w21 w19 w17
 */
	15137, 5315, 5315, 22654,		/*; w30 w28 w26 w24
 */
	-26722, 22654, -15137, -26722,	/*; w31 w29 w27 w25
 */

	/*row6
 */
	21407, 21407, 21407, -21407,	/* ; movq-> w06 w04 w02 w00
 */
	27969, 11585, 11585, -27969,	/* ; w07 w05 w03 w01
 */
	21407, -21407, 21407, 21407,	/* ; w14 w12 w10 w08
 */
	-11585, 27969, -27969, -11585,	/*  ;w15 w13 w11 w09
 */
	29692, 16819, 25172, -29692, 	/* ;w22 w20 w18 w16
 */
	25172, 5906, -5906, -16819, 	/* ;w23 w21 w19 w17
 */
	16819, 5906, 5906, 25172, 		/* ;w30 w28 w26 w24
 */
	-29692, 25172, -16819, -29692,	/*  ;w31 w29 w27 w25
 */

	/*row7
 */
	22725, 22725, 22725, -22725,	/* ; movq-> w06 w04 w02 w00
 */
	29692, 12299, 12299, -29692,	/*	; w07 w05 w03 w01
 */
	22725, -22725, 22725, 22725,	/*; w14 w12 w10 w08
 */
	-12299, 29692, -29692, -12299,	/*; w15 w13 w11 w09
 */
	31521, 17855, 26722, -31521,	/*; w22 w20 w18 w16
 */
	26722, 6270, -6270, -17855,		/*; w23 w21 w19 w17
 */
	17855, 6270, 6270, 26722,		/*; w30 w28 w26 w24
 */
	-31521, 26722, -17855, -31521};	/* w31 w29 w27 w25
 */


#define INP eax		/* pointer to (short *blk)
 */
#define OUT ecx		/* pointer to output (temporary store space qwTemp[])
 */
#define TABLE ebx	/* pointer to tab_i_01234567[]
 */
#define round_inv_row edx
#define round_inv_col edx

#define ROW_STRIDE 8 /* for 8x8 matrix transposer
 */

/* private variables and functions
 */

/*temporary storage space, 8x8 of shorts
 */

__inline static void idct_mmx32_rows( short *blk ); /* transform rows
 */
__inline static void idct_mmx32_cols( short *blk ); /* transform "columns"
 */
	/* the "column" transform actually transforms rows, it is
 */
	/* identical to the row-transform except for the ROUNDING
 */
	/* and SHIFTING coefficients.
 */

 
static void 
idct_mmx32_rows( short *blk )	/* transform all 8 rows of 8x8 iDCT block
 */
{
  int x;
  short qwTemp[64];
  short *out = &qwTemp[0];
  short *inptr = blk;
  /* this subroutine performs two operations
 */
  /* 1) iDCT row transform
 */
  /*		for( i = 0; i < 8; ++ i)
 */
  /*			DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
 */
  /*
 */
  /* 2) transpose the matrix (which was stored in qwTemp[])
 */
  /*        qwTemp[] -> [8x8 matrix transpose] -> blk[]
 */

  for (x=0; x<8; x++) {  /* transform one row per iteration
 */
	 movq_m2r(*(inptr), mm0);		/* 0 ; x3 x2 x1 x0
 */

	 movq_m2r(*(inptr+4), mm1);	/* 1 ; x7 x6 x5 x4
 */
	 movq_r2r(mm0, mm2);				/* 2 ; x3 x2 x1 x0
 */

	 movq_m2r(*(tab_i_01234567), mm3);	/* 3 ; w06 w04 w02 w00
 */
	 punpcklwd_r2r(mm1, mm0);			/* x5 x1 x4 x0
 */

    /* ----------
 */
	 movq_r2r(mm0, mm5);					/* 5 ; x5 x1 x4 x0
 */
	 punpckldq_r2r(mm0, mm0);			/* x4 x0 x4 x0
 */

	 movq_m2r(*(tab_i_01234567+4), mm4);	/* 4 ; w07 w05 w03 w01
 */
	 punpckhwd_r2r(mm1, mm2);			/* 1 ; x7 x3 x6 x2
 */

	 pmaddwd_r2r(mm0, mm3);				/* x4*w06+x0*w04 x4*w02+x0*w00
 */
	 movq_r2r(mm2, mm6);				/* 6 ; x7 x3 x6 x2
 */

	 movq_m2r(*(tab_i_01234567+16), mm1);/* 1 ; w22 w20 w18 w16
 */
	 punpckldq_r2r(mm2, mm2);			/* x6 x2 x6 x2
 */

	 pmaddwd_r2r(mm2, mm4);				/* x6*w07+x2*w05 x6*w03+x2*w01
 */
	 punpckhdq_r2r(mm5, mm5);			/* x5 x1 x5 x1
 */

	 pmaddwd_m2r(*(tab_i_01234567+8), mm0);/* x4*w14+x0*w12 x4*w10+x0*w08
 */
	 punpckhdq_r2r(mm6, mm6);			/* x7 x3 x7 x3
 */

	 movq_m2r(*(tab_i_01234567+20), mm7);/* 7 ; w23 w21 w19 w17
 */
	 pmaddwd_r2r(mm5, mm1);				/* x5*w22+x1*w20 x5*w18+x1*w16
 */

	 paddd_m2r(*(r_inv_row), mm3);/* +rounder
 */
	 pmaddwd_r2r(mm6, mm7);				/* x7*w23+x3*w21 x7*w19+x3*w17
 */

	 pmaddwd_m2r(*(tab_i_01234567+12), mm2);/* x6*w15+x2*w13 x6*w11+x2*w09
 */
	 paddd_r2r(mm4, mm3);				/* 4 ; a1=sum(even1) a0=sum(even0)
 */

	 pmaddwd_m2r(*(tab_i_01234567+24), mm5);/* x5*w30+x1*w28 x5*w26+x1*w24
 */
	 movq_r2r(mm3, mm4);				/* 4 ; a1 a0
 */

	 pmaddwd_m2r(*(tab_i_01234567+28), mm6);/* x7*w31+x3*w29 x7*w27+x3*w25
 */
	 paddd_r2r(mm7, mm1);				/* 7 ; b1=sum(odd1) b0=sum(odd0)
 */

	 paddd_m2r(*(r_inv_row), mm0);/* +rounder
 */
	 psubd_r2r(mm1, mm3);				/* a1-b1 a0-b0
 */

	 psrad_i2r(SHIFT_INV_ROW, mm3);		/* y6=a1-b1 y7=a0-b0
 */
	 paddd_r2r(mm4, mm1);				/* 4 ; a1+b1 a0+b0
 */

	 paddd_r2r(mm2, mm0);				/* 2 ; a3=sum(even3) a2=sum(even2)
 */
	 psrad_i2r(SHIFT_INV_ROW, mm1);		/* y1=a1+b1 y0=a0+b0
 */

	 paddd_r2r(mm6, mm5);				/* 6 ; b3=sum(odd3) b2=sum(odd2)
 */
	 movq_r2r(mm0, mm4);				/* 4 ; a3 a2
 */

	 paddd_r2r(mm5, mm0);				/* a3+b3 a2+b2
 */
	 psubd_r2r(mm5, mm4);				/* 5 ; a3-b3 a2-b2
 */

	 psrad_i2r(SHIFT_INV_ROW, mm4);		/* y4=a3-b3 y5=a2-b2
 */
	 psrad_i2r(SHIFT_INV_ROW, mm0);		/* y3=a3+b3 y2=a2+b2
 */

	 packssdw_r2r(mm3, mm4);				/* 3 ; y6 y7 y4 y5
 */

	 packssdw_r2r(mm0, mm1);				/* 0 ; y3 y2 y1 y0
 */
	 movq_r2r(mm4, mm7);				/* 7 ; y6 y7 y4 y5
 */

	 psrld_i2r(16, mm4);					/* 0 y6 0 y4
 */

	 movq_r2m(mm1, *(out));	/* 1 ; save y3 y2 y1 y0
 */
	 pslld_i2r(16, mm7);					/* y7 0 y5 0
 */

	 por_r2r(mm4, mm7);					/* 4 ; y7 y6 y5 y4
 */

   /* begin processing row 1
 */
	 movq_r2m(mm7, *(out+4));	/* 7 ; save y7 y6 y5 y4
 */

	 inptr += 8;
	 out += 8;
  }
	 

	/* done with the iDCT row-transformation
 */

	/* now we have to transpose the output 8x8 matrix
 */
	/* 8x8 (OUT) -> 8x8't' (IN)
 */
	/* the transposition is implemented as 4 sub-operations.
 */
	/* 1) transpose upper-left quad
 */
	/* 2) transpose lower-right quad
 */
	/* 3) transpose lower-left quad
 */
	/* 4) transpose upper-right quad
 */

 
	/* mm0 = 1st row [ A B C D ] row1
 */
	/* mm1 = 2nd row [ E F G H ] 2
 */
	/* mm2 = 3rd row [ I J K L ] 3
 */
	/* mm3 = 4th row [ M N O P ] 4
 */

	/* 1) transpose upper-left quad
 */
  out = &qwTemp[0];

  movq_m2r(*(out + ROW_STRIDE * 0), mm0);

  movq_m2r(*(out + ROW_STRIDE * 1), mm1);
  movq_r2r(mm0, mm4);	/* mm4 = copy of row1[A B C D]
 */
	
  movq_m2r(*(out + ROW_STRIDE * 2), mm2);
  punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5]
 */
	
  movq_m2r(*(out + ROW_STRIDE * 3), mm3);
  punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7]
 */

  movq_r2r(mm2, mm6);
  punpcklwd_r2r(mm3, mm2);	/* mm2 = [ 8 12 9 13]
 */

  punpckhwd_r2r(mm3, mm6);	/* mm6 = 10 14 11 15]
 */
  movq_r2r(mm0, mm1);	/* mm1 = [ 0 4 1 5]
 */

  inptr = blk;

  punpckldq_r2r(mm2, mm0);	/* final result mm0 = row1 [0 4 8 12]
 */

  movq_r2r(mm4, mm3);	/* mm3 = [ 2 6 3 7]
 */
  punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13]
 */

  movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); /* store row 1
 */
  punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14]
 */

/* begin reading next quadrant (lower-right)
 */
  movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0); 
  punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15]
 */

  movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); /* store row 3
 */
  movq_r2r(mm0, mm4);	/* mm4 = copy of row1[A B C D]
 */

  movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); /* store row 2
 */

  movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1);

  movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); /* store row 4
 */
  punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5]
 */

	/* 2) transpose lower-right quadrant
 */

/*	movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
 */

/*	movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
 */
/*	 movq mm4, mm0;	// mm4 = copy of row1[A B C D]
 */
	
  movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2);
/*	 punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
 */
  punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7]
 */
	
  movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3);
  movq_r2r(mm2, mm6);

  punpcklwd_r2r(mm3, mm2);	/* mm2 = [ 8 12 9 13]
 */
  movq_r2r(mm0, mm1);	/* mm1 = [ 0 4 1 5]
 */

  punpckhwd_r2r(mm3, mm6);	/* mm6 = 10 14 11 15]
 */
  movq_r2r(mm4, mm3);	/* mm3 = [ 2 6 3 7]
 */

  punpckldq_r2r(mm2, mm0);	/* final result mm0 = row1 [0 4 8 12]
 */

  punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13]
 */
  ; /* slot
 */

  movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); /* store row 1
 */
  punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14]
 */

  movq_m2r(*(out + ROW_STRIDE * 4 ), mm0);
  punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15]
 */
  
  movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); /* store row 3
 */
  movq_r2r(mm0, mm4);	/* mm4 = copy of row1[A B C D]
 */

  movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); /* store row 2
 */
  ; /* slot
 */
  
  movq_m2r(*(out + ROW_STRIDE * 5 ), mm1);
  ; /* slot
 */

  movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); /* store row 4
 */
  punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5]
 */

  /* 3) transpose lower-left
 */
/*	movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ]
 */

/*	movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ]
 */
/*	 movq mm4, mm0;	// mm4 = copy of row1[A B C D]
 */
	
  movq_m2r(*(out + ROW_STRIDE * 6 ), mm2);
/*	 punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
 */
  punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7]
 */
	
  movq_m2r(*(out + ROW_STRIDE * 7 ), mm3);
  movq_r2r(mm2, mm6);

  punpcklwd_r2r(mm3, mm2);	/* mm2 = [ 8 12 9 13]
 */
  movq_r2r(mm0, mm1);	/* mm1 = [ 0 4 1 5]
 */

  punpckhwd_r2r(mm3, mm6);	/* mm6 = 10 14 11 15]
 */
  movq_r2r(mm4, mm3);	/* mm3 = [ 2 6 3 7]
 */

  punpckldq_r2r(mm2, mm0);	/* final result mm0 = row1 [0 4 8 12]
 */

  punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13]
 */
  ;/*slot
 */

  movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); /* store row 1
 */
  punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14]
 */

/* begin reading next quadrant (upper-right)
 */
  movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0);
  punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15]
 */

  movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); /* store row 3
 */
  movq_r2r(mm0, mm4);	/* mm4 = copy of row1[A B C D]
 */

  movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); /* store row 2
 */
  movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1);

  movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); /* store row 4
 */
  punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5]
 */


	/* 2) transpose lower-right quadrant
 */

/*	movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
 */

/*	movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
 */
/*	 movq mm4, mm0;	// mm4 = copy of row1[A B C D]
 */
	
  movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2);
/*	 punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
 */
  punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7]
 */
	
  movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3);
  movq_r2r(mm2, mm6);

  punpcklwd_r2r(mm3, mm2);	/* mm2 = [ 8 12 9 13]
 */
  movq_r2r(mm0, mm1);	/* mm1 = [ 0 4 1 5]
 */

  punpckhwd_r2r(mm3, mm6);	/* mm6 = 10 14 11 15]
 */
  movq_r2r(mm4, mm3);	/* mm3 = [ 2 6 3 7]
 */

  punpckldq_r2r(mm2, mm0);	/* final result mm0 = row1 [0 4 8 12]
 */

  punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13]
 */
  ; /* slot
 */

  movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); /* store row 1
 */
  punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14]
 */

  movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); /* store row 2
 */
  punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15]
 */

  movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); /* store row 3
 */
  ; /* slot
 */

  movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); /* store row 4
 */
  ; /* slot
 */
 
}


static void 
idct_mmx32_cols( short *blk )	/* transform all 8 cols of 8x8 iDCT block
 */
{
  int x;
  short *inptr = blk;

	/* Despite the function's name, the matrix is transformed
 */
	/* row by row.  This function is identical to idct_mmx32_rows(),
 */
	/* except for the SHIFT amount and ROUND_INV amount.
 */

	/* this subroutine performs two operations
 */
	/* 1) iDCT row transform
 */
	/*		for( i = 0; i < 8; ++ i)
 */
	/*			DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
 */
	/*
 */
	/* 2) transpose the matrix (which was stored in qwTemp[])
 */
	/*        qwTemp[] -> [8x8 matrix transpose] -> blk[]
 */


  for (x=0; x<8; x++) {  /* transform one row per iteration
 */

    movq_m2r(*(inptr), mm0);		/* 0 ; x3 x2 x1 x0
 */

    movq_m2r(*(inptr+4), mm1);	/* 1 ; x7 x6 x5 x4
 */
	 movq_r2r(mm0, mm2);				/* 2 ; x3 x2 x1 x0
 */

	 movq_m2r(*(tab_i_01234567), mm3);	/* 3 ; w06 w04 w02 w00
 */
	 punpcklwd_r2r(mm1, mm0);			/* x5 x1 x4 x0
 */

/* ----------
 */
	 movq_r2r(mm0, mm5);					/* 5 ; x5 x1 x4 x0
 */
	 punpckldq_r2r(mm0, mm0);			/* x4 x0 x4 x0
 */

	 movq_m2r(*(tab_i_01234567+4), mm4);	/* 4 ; w07 w05 w03 w01
 */
	 punpckhwd_r2r(mm1, mm2);			/* 1 ; x7 x3 x6 x2
 */

	 pmaddwd_r2r(mm0, mm3);				/* x4*w06+x0*w04 x4*w02+x0*w00
 */
	 movq_r2r(mm2, mm6);				/* 6 ; x7 x3 x6 x2
 */

	 movq_m2r(*(tab_i_01234567+16), mm1);/* 1 ; w22 w20 w18 w16
 */
	 punpckldq_r2r(mm2, mm2);			/* x6 x2 x6 x2
 */

	 pmaddwd_r2r(mm2, mm4);				/* x6*w07+x2*w05 x6*w03+x2*w01
 */
	 punpckhdq_r2r(mm5, mm5);			/* x5 x1 x5 x1
 */

	 pmaddwd_m2r(*(tab_i_01234567+8), mm0);/* x4*w14+x0*w12 x4*w10+x0*w08
 */
	 punpckhdq_r2r(mm6, mm6);			/* x7 x3 x7 x3
 */

	 movq_m2r(*(tab_i_01234567+20), mm7);/* 7 ; w23 w21 w19 w17
 */
	 pmaddwd_r2r(mm5, mm1);				/* x5*w22+x1*w20 x5*w18+x1*w16
 */

	 paddd_m2r(*(r_inv_col), mm3);/* +rounder
 */
	 pmaddwd_r2r(mm6, mm7);				/* x7*w23+x3*w21 x7*w19+x3*w17
 */

	 pmaddwd_m2r(*(tab_i_01234567+12), mm2);/* x6*w15+x2*w13 x6*w11+x2*w09
 */
	 paddd_r2r(mm4, mm3);				/* 4 ; a1=sum(even1) a0=sum(even0)
 */

	 pmaddwd_m2r(*(tab_i_01234567+24), mm5);/* x5*w30+x1*w28 x5*w26+x1*w24
 */
	 movq_r2r(mm3, mm4);				/* 4 ; a1 a0
 */

	 pmaddwd_m2r(*(tab_i_01234567+28), mm6);/* x7*w31+x3*w29 x7*w27+x3*w25
 */
	 paddd_r2r(mm7, mm1);				/* 7 ; b1=sum(odd1) b0=sum(odd0)
 */

	 paddd_m2r(*(r_inv_col), mm0);/* +rounder
 */
	 psubd_r2r(mm1, mm3);				/* a1-b1 a0-b0
 */

	 psrad_i2r(SHIFT_INV_COL, mm3);		/* y6=a1-b1 y7=a0-b0
 */
	 paddd_r2r(mm4, mm1);				/* 4 ; a1+b1 a0+b0
 */

	 paddd_r2r(mm2, mm0);				/* 2 ; a3=sum(even3) a2=sum(even2)
 */
	 psrad_i2r(SHIFT_INV_COL, mm1);		/* y1=a1+b1 y0=a0+b0
 */

	 paddd_r2r(mm6, mm5);				/* 6 ; b3=sum(odd3) b2=sum(odd2)
 */
	 movq_r2r(mm0, mm4);				/* 4 ; a3 a2
 */

	 paddd_r2r(mm5, mm0);				/* a3+b3 a2+b2
 */
	 psubd_r2r(mm5, mm4);				/* 5 ; a3-b3 a2-b2
 */


	 psrad_i2r(SHIFT_INV_COL, mm4);		/* y4=a3-b3 y5=a2-b2
 */
	 psrad_i2r(SHIFT_INV_COL, mm0);		/* y3=a3+b3 y2=a2+b2
 */

	 packssdw_r2r(mm3, mm4);				/* 3 ; y6 y7 y4 y5
 */

	 packssdw_r2r(mm0, mm1);				/* 0 ; y3 y2 y1 y0
 */
	 movq_r2r(mm4, mm7);				/* 7 ; y6 y7 y4 y5
 */

	 psrld_i2r(16, mm4);					/* 0 y6 0 y4
 */

	 movq_r2m(mm1, *(inptr));	/* 1 ; save y3 y2 y1 y0
 */
	 pslld_i2r(16, mm7);					/* y7 0 y5 0
 */

	 por_r2r(mm4, mm7);					/* 4 ; y7 y6 y5 y4
 */

   /* begin processing row 1
 */
	 movq_r2m(mm7, *(inptr+4));	/* 7 ; save y7 y6 y5 y4
 */

	 inptr += 8;
  }
  /* done with the iDCT column-transformation
 */
}

/*	
 */
/* public interface to MMX32 IDCT 8x8 operation
 */
/*
 */
void
gst_idct_mmx32_idct( short *blk )
{
	/* 1) iDCT row transformation
 */
	idct_mmx32_rows( blk ); /* 1) transform iDCT row, and transpose
 */

	/* 2) iDCT column transformation
 */
	idct_mmx32_cols( blk ); /* 2) transform iDCT row, and transpose
 */

	emms();  /* restore processor state
 */
	/* all done
 */
}