/* * idctmmx32.cpp * * Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com * * This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter * * FlasKMPEG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * FlasKMPEG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * */ /* MMX32 iDCT algorithm (IEEE-1180 compliant) :: idct_mmx32() */ /* */ /* MPEG2AVI */ /* -------- */ /* v0.16B33 initial release */ /* */ /* This was one of the harder pieces of work to code. */ /* Intel's app-note focuses on the numerical issues of the algorithm, but */ /* assumes the programmer is familiar with IDCT mathematics, leaving the */ /* form of the complete function up to the programmer's imagination. */ /* */ /* ALGORITHM OVERVIEW */ /* ------------------ */ /* I played around with the code for quite a few hours. I came up */ /* with *A* working IDCT algorithm, however I'm not sure whether my routine */ /* is "the correct one." But rest assured, my code passes all six IEEE */ /* accuracy tests with plenty of margin. */ /* */ /* My IDCT algorithm consists of 4 steps: */ /* */ /* 1) IDCT-row transformation (using the IDCT-row function) on all 8 rows */ /* This yields an intermediate 8x8 matrix. */ /* */ /* 2) intermediate matrix transpose (mandatory) */ /* */ /* 3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate */ /* matrix. The output is the final-result, in transposed form. */ /* */ /* 4) post-transformation matrix transpose */ /* (not necessary if the input-data is already transposed, this could */ /* be done during the MPEG "zig-zag" scan, but since my algorithm */ /* requires at least one transpose operation, why not re-use the */ /* transpose-code.) */ /* */ /* Although the (1st) and (3rd) steps use the SAME row-transform operation, */ /* the (3rd) step uses different shift&round constants (explained later.) */ /* */ /* Also note that the intermediate transpose (2) would not be neccessary, */ /* if the subsequent operation were a iDCT-column transformation. Since */ /* we only have the iDCT-row transform, we transpose the intermediate */ /* matrix and use the iDCT-row transform a 2nd time. */ /* */ /* I had to change some constants/variables for my method to work : */ /* */ /* As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are */ /* wrong. Not surprising since I'm not using a true column-transform */ /* operation, but the row-transform operation (as mentioned earlier.) */ /* round_inv_col[], which is given as "4 short" values, should have the */ /* same dimensions as round_inv_row[]. The corrected variables are */ /* shown. */ /* */ /* Intel's code defines a different table for each each row operation. */ /* The tables given are 0/4, 1/7, 2/6, and 5/3. My code only uses row#0. */ /* Using the other rows messes up the overall transform. */ /* */ /* IMPLEMENTATION DETAILs */ /* ---------------------- */ /* */ /* I divided the algorithm's work into two subroutines, */ /* 1) idct_mmx32_rows() - transforms 8 rows, then transpose */ /* 2) idct_mmx32_cols() - transforms 8 rows, then transpose */ /* yields final result ("drop-in" direct replacement for INT32 IDCT) */ /* */ /* The 2nd function is a clone of the 1st, with changes made only to the */ /* shift&rounding instructions. */ /* */ /* In the 1st function (rows), the shift & round instructions use */ /* SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[]) */ /* */ /* In the 2nd function (cols)-> r_inv_col[], and */ /* SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[]) */ /* */ /* Each function contains an integrated transpose-operator, which comes */ /* AFTER the primary transformation operation. In the future, I'll optimize */ /* the code to do more of the transpose-work "in-place". Right now, I've */ /* left the code as two subroutines and a main calling function, so other */ /* people can read the code more easily. */ /* */ /* liaor@umcc.ais.org http://members.tripod.com/~liaor */ /* */ /*;============================================================================= */ /*; */ /*; AP-922 http://developer.intel.com/vtune/cbts/strmsimd */ /*; These examples contain code fragments for first stage iDCT 8x8 */ /*; (for rows) and first stage DCT 8x8 (for columns) */ /*; */ /*;============================================================================= */ /* mword typedef qword qword ptr equ mword ptr */ #include #define BITS_INV_ACC 4 /*; 4 or 5 for IEEE */ /* 5 yields higher accuracy, but lessens dynamic range on the input matrix */ #define SHIFT_INV_ROW (16 - BITS_INV_ACC) #define SHIFT_INV_COL (1 + BITS_INV_ACC +14 ) /* changed from Intel's val) */ /*#define SHIFT_INV_COL (1 + BITS_INV_ACC ) */ #define RND_INV_ROW (1 << (SHIFT_INV_ROW-1)) #define RND_INV_COL (1 << (SHIFT_INV_COL-1)) #define RND_INV_CORR (RND_INV_COL - 1) /*; correction -1.0 and round */ /*#define RND_INV_ROW (1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1) */ /*#define RND_INV_COL (16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1) */ /*.data */ /*Align 16 */ const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW}; const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL}; const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR }; /*const static short r_inv_col[4] = */ /* {RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL}; */ /*const static short r_inv_corr[4] = */ /* {RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR}; */ /* constants for the forward DCT /*#define BITS_FRW_ACC 3 //; 2 or 3 for accuracy */ /*#define SHIFT_FRW_COL BITS_FRW_ACC */ /*#define SHIFT_FRW_ROW (BITS_FRW_ACC + 17) */ /*#define RND_FRW_ROW (262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1) */ const static __int64 one_corr = 0x0001000100010001; const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW }; /*const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5 */ /*const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5 */ /*const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5 */ /*const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5 */ /*const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5 */ /*concatenated table, for forward DCT transformation */ const static short tg_all_16[] = { 13036, 13036, 13036, 13036, /* tg * (2<<16) + 0.5 */ 27146, 27146, 27146, 27146, /*tg * (2<<16) + 0.5 */ -21746, -21746, -21746, -21746, /* tg * (2<<16) + 0.5 */ -19195, -19195, -19195, -19195, /*cos * (2<<16) + 0.5 */ 23170, 23170, 23170, 23170 }; /*cos * (2<<15) + 0.5 */ #define tg_1_16 (tg_all_16 + 0) #define tg_2_16 (tg_all_16 + 8) #define tg_3_16 (tg_all_16 + 16) #define cos_4_16 (tg_all_16 + 24) #define ocos_4_16 (tg_all_16 + 32) */ /* ;============================================================================= ; ; The first stage iDCT 8x8 - inverse DCTs of rows ; ;----------------------------------------------------------------------------- ; The 8-point inverse DCT direct algorithm ;----------------------------------------------------------------------------- ; ; static const short w[32] = { ; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16), ; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16), ; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16), ; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16), ; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16), ; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16), ; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16), ; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) }; ; ; #define DCT_8_INV_ROW(x, y) ;{ ; int a0, a1, a2, a3, b0, b1, b2, b3; ; ; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3]; ; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7]; ; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11]; ; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15]; ; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19]; ; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23]; ; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27]; ; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31]; ; ; y[0] = SHIFT_ROUND ( a0 + b0 ); ; y[1] = SHIFT_ROUND ( a1 + b1 ); ; y[2] = SHIFT_ROUND ( a2 + b2 ); ; y[3] = SHIFT_ROUND ( a3 + b3 ); ; y[4] = SHIFT_ROUND ( a3 - b3 ); ; y[5] = SHIFT_ROUND ( a2 - b2 ); ; y[6] = SHIFT_ROUND ( a1 - b1 ); ; y[7] = SHIFT_ROUND ( a0 - b0 ); ;} ; ;----------------------------------------------------------------------------- ; ; In this implementation the outputs of the iDCT-1D are multiplied ; for rows 0,4 - by cos_4_16, ; for rows 1,7 - by cos_1_16, ; for rows 2,6 - by cos_2_16, ; for rows 3,5 - by cos_3_16 ; and are shifted to the left for better accuracy ; ; For the constants used, ; FIX(float_const) = (short) (float_const * (1<<15) + 0.5) ; ;============================================================================= ;============================================================================= IF _MMX ; MMX code ;============================================================================= /*; Table for rows 0,4 - constants are multiplied by cos_4_16 */ const short tab_i_04[] = { 16384, 16384, 16384, -16384, /* ; movq-> w06 w04 w02 w00 */ 21407, 8867, 8867, -21407, /* w07 w05 w03 w01 */ 16384, -16384, 16384, 16384, /*; w14 w12 w10 w08 */ -8867, 21407, -21407, -8867, /*; w15 w13 w11 w09 */ 22725, 12873, 19266, -22725, /*; w22 w20 w18 w16 */ 19266, 4520, -4520, -12873, /*; w23 w21 w19 w17 */ 12873, 4520, 4520, 19266, /*; w30 w28 w26 w24 */ -22725, 19266, -12873, -22725 };/*w31 w29 w27 w25 */ /*; Table for rows 1,7 - constants are multiplied by cos_1_16 */ const short tab_i_17[] = { 22725, 22725, 22725, -22725, /* ; movq-> w06 w04 w02 w00 */ 29692, 12299, 12299, -29692, /* ; w07 w05 w03 w01 */ 22725, -22725, 22725, 22725, /*; w14 w12 w10 w08 */ -12299, 29692, -29692, -12299, /*; w15 w13 w11 w09 */ 31521, 17855, 26722, -31521, /*; w22 w20 w18 w16 */ 26722, 6270, -6270, -17855, /*; w23 w21 w19 w17 */ 17855, 6270, 6270, 26722, /*; w30 w28 w26 w24 */ -31521, 26722, -17855, -31521}; /* w31 w29 w27 w25 */ /*; Table for rows 2,6 - constants are multiplied by cos_2_16 */ const short tab_i_26[] = { 21407, 21407, 21407, -21407, /* ; movq-> w06 w04 w02 w00 */ 27969, 11585, 11585, -27969, /* ; w07 w05 w03 w01 */ 21407, -21407, 21407, 21407, /* ; w14 w12 w10 w08 */ -11585, 27969, -27969, -11585, /* ;w15 w13 w11 w09 */ 29692, 16819, 25172, -29692, /* ;w22 w20 w18 w16 */ 25172, 5906, -5906, -16819, /* ;w23 w21 w19 w17 */ 16819, 5906, 5906, 25172, /* ;w30 w28 w26 w24 */ -29692, 25172, -16819, -29692}; /* ;w31 w29 w27 w25 */ /*; Table for rows 3,5 - constants are multiplied by cos_3_16 */ const short tab_i_35[] = { 19266, 19266, 19266, -19266, /*; movq-> w06 w04 w02 w00 */ 25172, 10426, 10426, -25172, /*; w07 w05 w03 w01 */ 19266, -19266, 19266, 19266, /*; w14 w12 w10 w08 */ -10426, 25172, -25172, -10426, /*; w15 w13 w11 w09 */ 26722, 15137, 22654, -26722, /*; w22 w20 w18 w16 */ 22654, 5315, -5315, -15137, /*; w23 w21 w19 w17 */ 15137, 5315, 5315, 22654, /*; w30 w28 w26 w24 */ -26722, 22654, -15137, -26722}; /*; w31 w29 w27 w25 */ */ /* CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order ) */ /* */ /* In our implementation, however, we only use row0 ! */ /* */ static const short tab_i_01234567[] = { /*row0, this row is required */ 16384, 16384, 16384, -16384, /* ; movq-> w06 w04 w02 w00 */ 21407, 8867, 8867, -21407, /* w07 w05 w03 w01 */ 16384, -16384, 16384, 16384, /*; w14 w12 w10 w08 */ -8867, 21407, -21407, -8867, /*; w15 w13 w11 w09 */ 22725, 12873, 19266, -22725, /*; w22 w20 w18 w16 */ 19266, 4520, -4520, -12873, /*; w23 w21 w19 w17 */ 12873, 4520, 4520, 19266, /*; w30 w28 w26 w24 */ -22725, 19266, -12873, -22725, /*w31 w29 w27 w25 */ /* the rest of these rows (1-7), aren't used ! */ /*row1 */ 22725, 22725, 22725, -22725, /* ; movq-> w06 w04 w02 w00 */ 29692, 12299, 12299, -29692, /* ; w07 w05 w03 w01 */ 22725, -22725, 22725, 22725, /*; w14 w12 w10 w08 */ -12299, 29692, -29692, -12299, /*; w15 w13 w11 w09 */ 31521, 17855, 26722, -31521, /*; w22 w20 w18 w16 */ 26722, 6270, -6270, -17855, /*; w23 w21 w19 w17 */ 17855, 6270, 6270, 26722, /*; w30 w28 w26 w24 */ -31521, 26722, -17855, -31521, /* w31 w29 w27 w25 */ /*row2 */ 21407, 21407, 21407, -21407, /* ; movq-> w06 w04 w02 w00 */ 27969, 11585, 11585, -27969, /* ; w07 w05 w03 w01 */ 21407, -21407, 21407, 21407, /* ; w14 w12 w10 w08 */ -11585, 27969, -27969, -11585, /* ;w15 w13 w11 w09 */ 29692, 16819, 25172, -29692, /* ;w22 w20 w18 w16 */ 25172, 5906, -5906, -16819, /* ;w23 w21 w19 w17 */ 16819, 5906, 5906, 25172, /* ;w30 w28 w26 w24 */ -29692, 25172, -16819, -29692, /* ;w31 w29 w27 w25 */ /*row3 */ 19266, 19266, 19266, -19266, /*; movq-> w06 w04 w02 w00 */ 25172, 10426, 10426, -25172, /*; w07 w05 w03 w01 */ 19266, -19266, 19266, 19266, /*; w14 w12 w10 w08 */ -10426, 25172, -25172, -10426, /*; w15 w13 w11 w09 */ 26722, 15137, 22654, -26722, /*; w22 w20 w18 w16 */ 22654, 5315, -5315, -15137, /*; w23 w21 w19 w17 */ 15137, 5315, 5315, 22654, /*; w30 w28 w26 w24 */ -26722, 22654, -15137, -26722, /*; w31 w29 w27 w25 */ /*row4 */ 16384, 16384, 16384, -16384, /* ; movq-> w06 w04 w02 w00 */ 21407, 8867, 8867, -21407, /* w07 w05 w03 w01 */ 16384, -16384, 16384, 16384, /*; w14 w12 w10 w08 */ -8867, 21407, -21407, -8867, /*; w15 w13 w11 w09 */ 22725, 12873, 19266, -22725, /*; w22 w20 w18 w16 */ 19266, 4520, -4520, -12873, /*; w23 w21 w19 w17 */ 12873, 4520, 4520, 19266, /*; w30 w28 w26 w24 */ -22725, 19266, -12873, -22725, /*w31 w29 w27 w25 */ /*row5 */ 19266, 19266, 19266, -19266, /*; movq-> w06 w04 w02 w00 */ 25172, 10426, 10426, -25172, /*; w07 w05 w03 w01 */ 19266, -19266, 19266, 19266, /*; w14 w12 w10 w08 */ -10426, 25172, -25172, -10426, /*; w15 w13 w11 w09 */ 26722, 15137, 22654, -26722, /*; w22 w20 w18 w16 */ 22654, 5315, -5315, -15137, /*; w23 w21 w19 w17 */ 15137, 5315, 5315, 22654, /*; w30 w28 w26 w24 */ -26722, 22654, -15137, -26722, /*; w31 w29 w27 w25 */ /*row6 */ 21407, 21407, 21407, -21407, /* ; movq-> w06 w04 w02 w00 */ 27969, 11585, 11585, -27969, /* ; w07 w05 w03 w01 */ 21407, -21407, 21407, 21407, /* ; w14 w12 w10 w08 */ -11585, 27969, -27969, -11585, /* ;w15 w13 w11 w09 */ 29692, 16819, 25172, -29692, /* ;w22 w20 w18 w16 */ 25172, 5906, -5906, -16819, /* ;w23 w21 w19 w17 */ 16819, 5906, 5906, 25172, /* ;w30 w28 w26 w24 */ -29692, 25172, -16819, -29692, /* ;w31 w29 w27 w25 */ /*row7 */ 22725, 22725, 22725, -22725, /* ; movq-> w06 w04 w02 w00 */ 29692, 12299, 12299, -29692, /* ; w07 w05 w03 w01 */ 22725, -22725, 22725, 22725, /*; w14 w12 w10 w08 */ -12299, 29692, -29692, -12299, /*; w15 w13 w11 w09 */ 31521, 17855, 26722, -31521, /*; w22 w20 w18 w16 */ 26722, 6270, -6270, -17855, /*; w23 w21 w19 w17 */ 17855, 6270, 6270, 26722, /*; w30 w28 w26 w24 */ -31521, 26722, -17855, -31521}; /* w31 w29 w27 w25 */ #define INP eax /* pointer to (short *blk) */ #define OUT ecx /* pointer to output (temporary store space qwTemp[]) */ #define TABLE ebx /* pointer to tab_i_01234567[] */ #define round_inv_row edx #define round_inv_col edx #define ROW_STRIDE 8 /* for 8x8 matrix transposer */ /* private variables and functions */ /*temporary storage space, 8x8 of shorts */ __inline static void idct_mmx32_rows( short *blk ); /* transform rows */ __inline static void idct_mmx32_cols( short *blk ); /* transform "columns" */ /* the "column" transform actually transforms rows, it is */ /* identical to the row-transform except for the ROUNDING */ /* and SHIFTING coefficients. */ static void idct_mmx32_rows( short *blk ) /* transform all 8 rows of 8x8 iDCT block */ { int x; short qwTemp[64]; short *out = &qwTemp[0]; short *inptr = blk; /* this subroutine performs two operations */ /* 1) iDCT row transform */ /* for( i = 0; i < 8; ++ i) */ /* DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] ); */ /* */ /* 2) transpose the matrix (which was stored in qwTemp[]) */ /* qwTemp[] -> [8x8 matrix transpose] -> blk[] */ for (x=0; x<8; x++) { /* transform one row per iteration */ movq_m2r(*(inptr), mm0); /* 0 ; x3 x2 x1 x0 */ movq_m2r(*(inptr+4), mm1); /* 1 ; x7 x6 x5 x4 */ movq_r2r(mm0, mm2); /* 2 ; x3 x2 x1 x0 */ movq_m2r(*(tab_i_01234567), mm3); /* 3 ; w06 w04 w02 w00 */ punpcklwd_r2r(mm1, mm0); /* x5 x1 x4 x0 */ /* ---------- */ movq_r2r(mm0, mm5); /* 5 ; x5 x1 x4 x0 */ punpckldq_r2r(mm0, mm0); /* x4 x0 x4 x0 */ movq_m2r(*(tab_i_01234567+4), mm4); /* 4 ; w07 w05 w03 w01 */ punpckhwd_r2r(mm1, mm2); /* 1 ; x7 x3 x6 x2 */ pmaddwd_r2r(mm0, mm3); /* x4*w06+x0*w04 x4*w02+x0*w00 */ movq_r2r(mm2, mm6); /* 6 ; x7 x3 x6 x2 */ movq_m2r(*(tab_i_01234567+16), mm1);/* 1 ; w22 w20 w18 w16 */ punpckldq_r2r(mm2, mm2); /* x6 x2 x6 x2 */ pmaddwd_r2r(mm2, mm4); /* x6*w07+x2*w05 x6*w03+x2*w01 */ punpckhdq_r2r(mm5, mm5); /* x5 x1 x5 x1 */ pmaddwd_m2r(*(tab_i_01234567+8), mm0);/* x4*w14+x0*w12 x4*w10+x0*w08 */ punpckhdq_r2r(mm6, mm6); /* x7 x3 x7 x3 */ movq_m2r(*(tab_i_01234567+20), mm7);/* 7 ; w23 w21 w19 w17 */ pmaddwd_r2r(mm5, mm1); /* x5*w22+x1*w20 x5*w18+x1*w16 */ paddd_m2r(*(r_inv_row), mm3);/* +rounder */ pmaddwd_r2r(mm6, mm7); /* x7*w23+x3*w21 x7*w19+x3*w17 */ pmaddwd_m2r(*(tab_i_01234567+12), mm2);/* x6*w15+x2*w13 x6*w11+x2*w09 */ paddd_r2r(mm4, mm3); /* 4 ; a1=sum(even1) a0=sum(even0) */ pmaddwd_m2r(*(tab_i_01234567+24), mm5);/* x5*w30+x1*w28 x5*w26+x1*w24 */ movq_r2r(mm3, mm4); /* 4 ; a1 a0 */ pmaddwd_m2r(*(tab_i_01234567+28), mm6);/* x7*w31+x3*w29 x7*w27+x3*w25 */ paddd_r2r(mm7, mm1); /* 7 ; b1=sum(odd1) b0=sum(odd0) */ paddd_m2r(*(r_inv_row), mm0);/* +rounder */ psubd_r2r(mm1, mm3); /* a1-b1 a0-b0 */ psrad_i2r(SHIFT_INV_ROW, mm3); /* y6=a1-b1 y7=a0-b0 */ paddd_r2r(mm4, mm1); /* 4 ; a1+b1 a0+b0 */ paddd_r2r(mm2, mm0); /* 2 ; a3=sum(even3) a2=sum(even2) */ psrad_i2r(SHIFT_INV_ROW, mm1); /* y1=a1+b1 y0=a0+b0 */ paddd_r2r(mm6, mm5); /* 6 ; b3=sum(odd3) b2=sum(odd2) */ movq_r2r(mm0, mm4); /* 4 ; a3 a2 */ paddd_r2r(mm5, mm0); /* a3+b3 a2+b2 */ psubd_r2r(mm5, mm4); /* 5 ; a3-b3 a2-b2 */ psrad_i2r(SHIFT_INV_ROW, mm4); /* y4=a3-b3 y5=a2-b2 */ psrad_i2r(SHIFT_INV_ROW, mm0); /* y3=a3+b3 y2=a2+b2 */ packssdw_r2r(mm3, mm4); /* 3 ; y6 y7 y4 y5 */ packssdw_r2r(mm0, mm1); /* 0 ; y3 y2 y1 y0 */ movq_r2r(mm4, mm7); /* 7 ; y6 y7 y4 y5 */ psrld_i2r(16, mm4); /* 0 y6 0 y4 */ movq_r2m(mm1, *(out)); /* 1 ; save y3 y2 y1 y0 */ pslld_i2r(16, mm7); /* y7 0 y5 0 */ por_r2r(mm4, mm7); /* 4 ; y7 y6 y5 y4 */ /* begin processing row 1 */ movq_r2m(mm7, *(out+4)); /* 7 ; save y7 y6 y5 y4 */ inptr += 8; out += 8; } /* done with the iDCT row-transformation */ /* now we have to transpose the output 8x8 matrix */ /* 8x8 (OUT) -> 8x8't' (IN) */ /* the transposition is implemented as 4 sub-operations. */ /* 1) transpose upper-left quad */ /* 2) transpose lower-right quad */ /* 3) transpose lower-left quad */ /* 4) transpose upper-right quad */ /* mm0 = 1st row [ A B C D ] row1 */ /* mm1 = 2nd row [ E F G H ] 2 */ /* mm2 = 3rd row [ I J K L ] 3 */ /* mm3 = 4th row [ M N O P ] 4 */ /* 1) transpose upper-left quad */ out = &qwTemp[0]; movq_m2r(*(out + ROW_STRIDE * 0), mm0); movq_m2r(*(out + ROW_STRIDE * 1), mm1); movq_r2r(mm0, mm4); /* mm4 = copy of row1[A B C D] */ movq_m2r(*(out + ROW_STRIDE * 2), mm2); punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5] */ movq_m2r(*(out + ROW_STRIDE * 3), mm3); punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7] */ movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); /* mm2 = [ 8 12 9 13] */ punpckhwd_r2r(mm3, mm6); /* mm6 = 10 14 11 15] */ movq_r2r(mm0, mm1); /* mm1 = [ 0 4 1 5] */ inptr = blk; punpckldq_r2r(mm2, mm0); /* final result mm0 = row1 [0 4 8 12] */ movq_r2r(mm4, mm3); /* mm3 = [ 2 6 3 7] */ punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13] */ movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); /* store row 1 */ punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14] */ /* begin reading next quadrant (lower-right) */ movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0); punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15] */ movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); /* store row 3 */ movq_r2r(mm0, mm4); /* mm4 = copy of row1[A B C D] */ movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); /* store row 2 */ movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1); movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); /* store row 4 */ punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5] */ /* 2) transpose lower-right quadrant */ /* movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8] */ /* movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8] */ /* movq mm4, mm0; // mm4 = copy of row1[A B C D] */ movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2); /* punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5] */ punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7] */ movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3); movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); /* mm2 = [ 8 12 9 13] */ movq_r2r(mm0, mm1); /* mm1 = [ 0 4 1 5] */ punpckhwd_r2r(mm3, mm6); /* mm6 = 10 14 11 15] */ movq_r2r(mm4, mm3); /* mm3 = [ 2 6 3 7] */ punpckldq_r2r(mm2, mm0); /* final result mm0 = row1 [0 4 8 12] */ punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13] */ ; /* slot */ movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); /* store row 1 */ punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14] */ movq_m2r(*(out + ROW_STRIDE * 4 ), mm0); punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15] */ movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); /* store row 3 */ movq_r2r(mm0, mm4); /* mm4 = copy of row1[A B C D] */ movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); /* store row 2 */ ; /* slot */ movq_m2r(*(out + ROW_STRIDE * 5 ), mm1); ; /* slot */ movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); /* store row 4 */ punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5] */ /* 3) transpose lower-left */ /* movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ] */ /* movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ] */ /* movq mm4, mm0; // mm4 = copy of row1[A B C D] */ movq_m2r(*(out + ROW_STRIDE * 6 ), mm2); /* punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5] */ punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7] */ movq_m2r(*(out + ROW_STRIDE * 7 ), mm3); movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); /* mm2 = [ 8 12 9 13] */ movq_r2r(mm0, mm1); /* mm1 = [ 0 4 1 5] */ punpckhwd_r2r(mm3, mm6); /* mm6 = 10 14 11 15] */ movq_r2r(mm4, mm3); /* mm3 = [ 2 6 3 7] */ punpckldq_r2r(mm2, mm0); /* final result mm0 = row1 [0 4 8 12] */ punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13] */ ;/*slot */ movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); /* store row 1 */ punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14] */ /* begin reading next quadrant (upper-right) */ movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0); punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15] */ movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); /* store row 3 */ movq_r2r(mm0, mm4); /* mm4 = copy of row1[A B C D] */ movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); /* store row 2 */ movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1); movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); /* store row 4 */ punpcklwd_r2r(mm1, mm0); /* mm0 = [ 0 4 1 5] */ /* 2) transpose lower-right quadrant */ /* movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8] */ /* movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8] */ /* movq mm4, mm0; // mm4 = copy of row1[A B C D] */ movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2); /* punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5] */ punpckhwd_r2r(mm1, mm4); /* mm4 = [ 2 6 3 7] */ movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3); movq_r2r(mm2, mm6); punpcklwd_r2r(mm3, mm2); /* mm2 = [ 8 12 9 13] */ movq_r2r(mm0, mm1); /* mm1 = [ 0 4 1 5] */ punpckhwd_r2r(mm3, mm6); /* mm6 = 10 14 11 15] */ movq_r2r(mm4, mm3); /* mm3 = [ 2 6 3 7] */ punpckldq_r2r(mm2, mm0); /* final result mm0 = row1 [0 4 8 12] */ punpckhdq_r2r(mm2, mm1); /* mm1 = final result mm1 = row2 [1 5 9 13] */ ; /* slot */ movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); /* store row 1 */ punpckldq_r2r(mm6, mm4); /* final result mm4 = row3 [2 6 10 14] */ movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); /* store row 2 */ punpckhdq_r2r(mm6, mm3); /* final result mm3 = row4 [3 7 11 15] */ movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); /* store row 3 */ ; /* slot */ movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); /* store row 4 */ ; /* slot */ } static void idct_mmx32_cols( short *blk ) /* transform all 8 cols of 8x8 iDCT block */ { int x; short *inptr = blk; /* Despite the function's name, the matrix is transformed */ /* row by row. This function is identical to idct_mmx32_rows(), */ /* except for the SHIFT amount and ROUND_INV amount. */ /* this subroutine performs two operations */ /* 1) iDCT row transform */ /* for( i = 0; i < 8; ++ i) */ /* DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] ); */ /* */ /* 2) transpose the matrix (which was stored in qwTemp[]) */ /* qwTemp[] -> [8x8 matrix transpose] -> blk[] */ for (x=0; x<8; x++) { /* transform one row per iteration */ movq_m2r(*(inptr), mm0); /* 0 ; x3 x2 x1 x0 */ movq_m2r(*(inptr+4), mm1); /* 1 ; x7 x6 x5 x4 */ movq_r2r(mm0, mm2); /* 2 ; x3 x2 x1 x0 */ movq_m2r(*(tab_i_01234567), mm3); /* 3 ; w06 w04 w02 w00 */ punpcklwd_r2r(mm1, mm0); /* x5 x1 x4 x0 */ /* ---------- */ movq_r2r(mm0, mm5); /* 5 ; x5 x1 x4 x0 */ punpckldq_r2r(mm0, mm0); /* x4 x0 x4 x0 */ movq_m2r(*(tab_i_01234567+4), mm4); /* 4 ; w07 w05 w03 w01 */ punpckhwd_r2r(mm1, mm2); /* 1 ; x7 x3 x6 x2 */ pmaddwd_r2r(mm0, mm3); /* x4*w06+x0*w04 x4*w02+x0*w00 */ movq_r2r(mm2, mm6); /* 6 ; x7 x3 x6 x2 */ movq_m2r(*(tab_i_01234567+16), mm1);/* 1 ; w22 w20 w18 w16 */ punpckldq_r2r(mm2, mm2); /* x6 x2 x6 x2 */ pmaddwd_r2r(mm2, mm4); /* x6*w07+x2*w05 x6*w03+x2*w01 */ punpckhdq_r2r(mm5, mm5); /* x5 x1 x5 x1 */ pmaddwd_m2r(*(tab_i_01234567+8), mm0);/* x4*w14+x0*w12 x4*w10+x0*w08 */ punpckhdq_r2r(mm6, mm6); /* x7 x3 x7 x3 */ movq_m2r(*(tab_i_01234567+20), mm7);/* 7 ; w23 w21 w19 w17 */ pmaddwd_r2r(mm5, mm1); /* x5*w22+x1*w20 x5*w18+x1*w16 */ paddd_m2r(*(r_inv_col), mm3);/* +rounder */ pmaddwd_r2r(mm6, mm7); /* x7*w23+x3*w21 x7*w19+x3*w17 */ pmaddwd_m2r(*(tab_i_01234567+12), mm2);/* x6*w15+x2*w13 x6*w11+x2*w09 */ paddd_r2r(mm4, mm3); /* 4 ; a1=sum(even1) a0=sum(even0) */ pmaddwd_m2r(*(tab_i_01234567+24), mm5);/* x5*w30+x1*w28 x5*w26+x1*w24 */ movq_r2r(mm3, mm4); /* 4 ; a1 a0 */ pmaddwd_m2r(*(tab_i_01234567+28), mm6);/* x7*w31+x3*w29 x7*w27+x3*w25 */ paddd_r2r(mm7, mm1); /* 7 ; b1=sum(odd1) b0=sum(odd0) */ paddd_m2r(*(r_inv_col), mm0);/* +rounder */ psubd_r2r(mm1, mm3); /* a1-b1 a0-b0 */ psrad_i2r(SHIFT_INV_COL, mm3); /* y6=a1-b1 y7=a0-b0 */ paddd_r2r(mm4, mm1); /* 4 ; a1+b1 a0+b0 */ paddd_r2r(mm2, mm0); /* 2 ; a3=sum(even3) a2=sum(even2) */ psrad_i2r(SHIFT_INV_COL, mm1); /* y1=a1+b1 y0=a0+b0 */ paddd_r2r(mm6, mm5); /* 6 ; b3=sum(odd3) b2=sum(odd2) */ movq_r2r(mm0, mm4); /* 4 ; a3 a2 */ paddd_r2r(mm5, mm0); /* a3+b3 a2+b2 */ psubd_r2r(mm5, mm4); /* 5 ; a3-b3 a2-b2 */ psrad_i2r(SHIFT_INV_COL, mm4); /* y4=a3-b3 y5=a2-b2 */ psrad_i2r(SHIFT_INV_COL, mm0); /* y3=a3+b3 y2=a2+b2 */ packssdw_r2r(mm3, mm4); /* 3 ; y6 y7 y4 y5 */ packssdw_r2r(mm0, mm1); /* 0 ; y3 y2 y1 y0 */ movq_r2r(mm4, mm7); /* 7 ; y6 y7 y4 y5 */ psrld_i2r(16, mm4); /* 0 y6 0 y4 */ movq_r2m(mm1, *(inptr)); /* 1 ; save y3 y2 y1 y0 */ pslld_i2r(16, mm7); /* y7 0 y5 0 */ por_r2r(mm4, mm7); /* 4 ; y7 y6 y5 y4 */ /* begin processing row 1 */ movq_r2m(mm7, *(inptr+4)); /* 7 ; save y7 y6 y5 y4 */ inptr += 8; } /* done with the iDCT column-transformation */ } /* */ /* public interface to MMX32 IDCT 8x8 operation */ /* */ void gst_idct_mmx32_idct( short *blk ) { /* 1) iDCT row transformation */ idct_mmx32_rows( blk ); /* 1) transform iDCT row, and transpose */ /* 2) iDCT column transformation */ idct_mmx32_cols( blk ); /* 2) transform iDCT row, and transpose */ emms(); /* restore processor state */ /* all done */ }