/* Resampling library * Copyright (C) <2001> David A. Schleef <ds@schleef.org> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include <string.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include "private.h" #include <gst/gstplugin.h> #include <gst/gstversion.h> inline double sinc(double x) { if(x==0)return 1; return sin(x) / x; } inline double window_func(double x) { x = 1 - x*x; return x*x; } signed short double_to_s16(double x) { if(x<-32768){ printf("clipped\n"); return -32768; } if(x>32767){ printf("clipped\n"); return -32767; } return rint(x); } signed short double_to_s16_ppcasm(double x) { if(x<-32768){ return -32768; } if(x>32767){ return -32767; } return rint(x); } void resample_init(resample_t * r) { r->i_start = 0; if(r->filter_length&1){ r->o_start = 0; }else{ r->o_start = r->o_inc * 0.5; } memset(r->acc, 0, sizeof(r->acc)); resample_reinit(r); } void resample_reinit(resample_t * r) { /* i_inc is the number of samples that the output increments for * each input sample. o_inc is the opposite. */ r->i_inc = (double) r->o_rate / r->i_rate; r->o_inc = (double) r->i_rate / r->o_rate; r->halftaps = (r->filter_length - 1.0) * 0.5; if (r->format == RESAMPLE_S16) { switch (r->method) { default: case RESAMPLE_NEAREST: r->scale = resample_nearest_s16; break; case RESAMPLE_BILINEAR: r->scale = resample_bilinear_s16; break; case RESAMPLE_SINC_SLOW: r->scale = resample_sinc_s16; break; case RESAMPLE_SINC: r->scale = resample_sinc_ft_s16; break; } } else if (r->format == RESAMPLE_FLOAT) { switch (r->method) { default: case RESAMPLE_NEAREST: r->scale = resample_nearest_float; break; case RESAMPLE_BILINEAR: r->scale = resample_bilinear_float; break; case RESAMPLE_SINC_SLOW: r->scale = resample_sinc_float; break; case RESAMPLE_SINC: r->scale = resample_sinc_ft_float; break; } } else { fprintf (stderr, "resample: Unexpected format \"%d\"\n", r->format); } } /* * Prepare to be confused. * * We keep a "timebase" that is based on output samples. The zero * of the timebase cooresponds to the next output sample that will * be written. * * i_start is the "time" that corresponds to the first input sample * in an incoming buffer. Since the output depends on input samples * ahead in time, i_start will tend to be around halftaps. * * i_start_buf is the time of the first sample in the temporary * buffer. */ void resample_scale(resample_t * r, void *i_buf, unsigned int i_size) { int o_size; r->i_buf = i_buf; r->i_samples = i_size / 2 / r->channels; r->i_start_buf = r->i_start - r->filter_length * r->i_inc; /* i_start is the offset (in a given output sample) that is the * beginning of the current input buffer */ r->i_end = r->i_start + r->i_inc * r->i_samples; r->o_samples = floor(r->i_end - r->halftaps * r->i_inc); o_size = r->o_samples * r->channels * 2; r->o_buf = r->get_buffer(r->priv, o_size); if(r->verbose){ printf("resample_scale: i_buf=%p i_size=%d\n", i_buf,i_size); printf("resample_scale: i_samples=%d o_samples=%d i_inc=%g o_buf=%p\n", r->i_samples, r->o_samples, r->i_inc, r->o_buf); printf("resample_scale: i_start=%g i_end=%g o_start=%g\n", r->i_start, r->i_end, r->o_start); } if ((r->filter_length + r->i_samples)*sizeof(double)*2 > r->buffer_len) { int size = (r->filter_length + r->i_samples) * sizeof(double) * 2; if(r->verbose){ printf("resample temp buffer size=%d\n",size); } if(r->buffer)free(r->buffer); r->buffer_len = size; r->buffer = malloc(size); memset(r->buffer, 0, size); } if (r->format==RESAMPLE_S16) { if(r->channels==2){ conv_double_short( r->buffer + r->filter_length * sizeof(double) * 2, r->i_buf, r->i_samples * 2); } else { conv_double_short_dstr( r->buffer + r->filter_length * sizeof(double) * 2, r->i_buf, r->i_samples, sizeof(double) * 2); } } else if (r->format==RESAMPLE_FLOAT) { if(r->channels==2){ conv_double_float( r->buffer + r->filter_length * sizeof(double) * 2, r->i_buf, r->i_samples * 2); } else { conv_double_float_dstr( r->buffer + r->filter_length * sizeof(double) * 2, r->i_buf, r->i_samples, sizeof(double) * 2); } } r->scale(r); memcpy(r->buffer, r->buffer + r->i_samples * sizeof(double) * 2, r->filter_length * sizeof(double) * 2); /* updating times */ r->i_start += r->i_samples * r->i_inc; r->o_start += r->o_samples * r->o_inc - r->i_samples; /* adjusting timebase zero */ r->i_start -= r->o_samples; } void resample_nearest_s16(resample_t * r) { signed short *i_ptr, *o_ptr; int i_count = 0; double a; int i; i_ptr = (signed short *) r->i_buf; o_ptr = (signed short *) r->o_buf; a = r->o_start; i_count = 0; #define SCALE_LOOP(COPY,INC) \ for (i = 0; i < r->o_samples; i++) { \ COPY; \ a += r->o_inc; \ while (a >= 1) { \ a -= 1; \ i_ptr+=INC; \ i_count++; \ } \ o_ptr+=INC; \ } switch (r->channels) { case 1: SCALE_LOOP(o_ptr[0] = i_ptr[0], 1); break; case 2: SCALE_LOOP(o_ptr[0] = i_ptr[0]; o_ptr[1] = i_ptr[1], 2); break; default: { int n, n_chan = r->channels; SCALE_LOOP(for (n = 0; n < n_chan; n++) o_ptr[n] = i_ptr[n], n_chan); } } if (i_count != r->i_samples) { printf("handled %d in samples (expected %d)\n", i_count, r->i_samples); } } void resample_bilinear_s16(resample_t * r) { signed short *i_ptr, *o_ptr; int o_count = 0; double b; int i; double acc0, acc1; i_ptr = (signed short *) r->i_buf; o_ptr = (signed short *) r->o_buf; acc0 = r->acc[0]; acc1 = r->acc[1]; b = r->i_start; for (i = 0; i < r->i_samples; i++) { b += r->i_inc; /*printf("in %d\n",i_ptr[0]); */ if(b>=2){ printf("not expecting b>=2\n"); } if (b >= 1) { acc0 += (1.0 - (b-r->i_inc)) * i_ptr[0]; acc1 += (1.0 - (b-r->i_inc)) * i_ptr[1]; o_ptr[0] = rint(acc0); /*printf("out %d\n",o_ptr[0]); */ o_ptr[1] = rint(acc1); o_ptr += 2; o_count++; b -= 1.0; acc0 = b * i_ptr[0]; acc1 = b * i_ptr[1]; } else { acc0 += i_ptr[0] * r->i_inc; acc1 += i_ptr[1] * r->i_inc; } i_ptr += 2; } r->acc[0] = acc0; r->acc[1] = acc1; if (o_count != r->o_samples) { printf("handled %d out samples (expected %d)\n", o_count, r->o_samples); } } void resample_sinc_slow_s16(resample_t * r) { signed short *i_ptr, *o_ptr; int i, j; double c0, c1; double a; int start; double center; double weight; if (!r->buffer) { int size = r->filter_length * 2 * r->channels; printf("resample temp buffer\n"); r->buffer = malloc(size); memset(r->buffer, 0, size); } i_ptr = (signed short *) r->i_buf; o_ptr = (signed short *) r->o_buf; a = r->i_start; #define GETBUF(index,chan) (((index)<0) \ ? ((short *)(r->buffer))[((index)+r->filter_length)*2+(chan)] \ : i_ptr[(index)*2+(chan)]) { double sinx, cosx, sind, cosd; double x, d; double t; for (i = 0; i < r->o_samples; i++) { start = floor(a) - r->filter_length; center = a - r->halftaps; x = M_PI * (start - center) * r->o_inc; sinx = sin(M_PI * (start - center) * r->o_inc); cosx = cos(M_PI * (start - center) * r->o_inc); d = M_PI * r->o_inc; sind = sin(M_PI * r->o_inc); cosd = cos(M_PI * r->o_inc); c0 = 0; c1 = 0; for (j = 0; j < r->filter_length; j++) { weight = (x==0)?1:(sinx/x); /*printf("j %d sin %g cos %g\n",j,sinx,cosx); */ /*printf("j %d sin %g x %g sinc %g\n",j,sinx,x,weight); */ c0 += weight * GETBUF((start + j), 0); c1 += weight * GETBUF((start + j), 1); t = cosx * cosd - sinx * sind; sinx = cosx * sind + sinx * cosd; cosx = t; x += d; } o_ptr[0] = rint(c0); o_ptr[1] = rint(c1); o_ptr += 2; a += r->o_inc; } } #undef GETBUF memcpy(r->buffer, i_ptr + (r->i_samples - r->filter_length) * r->channels, r->filter_length * 2 * r->channels); } /* only works for channels == 2 ???? */ void resample_sinc_s16(resample_t * r) { double *ptr; signed short *o_ptr; int i, j; double c0, c1; double a; int start; double center; double weight; double x0, x, d; double scale; ptr = (double *) r->buffer; o_ptr = (signed short *) r->o_buf; /* scale provides a cutoff frequency for the low * pass filter aspects of sinc(). scale=M_PI * will cut off at the input frequency, which is * good for up-sampling, but will cause aliasing * for downsampling. Downsampling needs to be * cut off at o_rate, thus scale=M_PI*r->i_inc. */ /* actually, it needs to be M_PI*r->i_inc*r->i_inc. * Need to research why. */ scale = M_PI*r->i_inc; for (i = 0; i < r->o_samples; i++) { a = r->o_start + i * r->o_inc; start = floor(a - r->halftaps); /*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */ center = a; /*x = M_PI * (start - center) * r->o_inc; */ /*d = M_PI * r->o_inc; */ /*x = (start - center) * r->o_inc; */ x0 = (start - center) * r->o_inc; d = r->o_inc; c0 = 0; c1 = 0; for (j = 0; j < r->filter_length; j++) { x = x0 + d * j; weight = sinc(x*scale*r->i_inc)*scale/M_PI; weight *= window_func(x/r->halftaps*r->i_inc); c0 += weight * ptr[(start + j + r->filter_length)*2 + 0]; c1 += weight * ptr[(start + j + r->filter_length)*2 + 1]; } o_ptr[0] = double_to_s16(c0); o_ptr[1] = double_to_s16(c1); o_ptr += 2; } } /* * Resampling audio is best done using a sinc() filter. * * * out[t] = Sum( in[t'] * sinc((t-t')/delta_t), all t') * * The immediate problem with this algorithm is that it involves a * sum over an infinite number of input samples, both in the past * and future. Note that even though sinc(x) is bounded by 1/x, * and thus decays to 0 for large x, since sum(x,{x=0,1..,n}) diverges * as log(n), we need to be careful about convergence. This is * typically done by using a windowing function, which also makes * the sum over a finite number of input samples. * * The next problem is computational: sinc(), and especially * sinc() multiplied by a non-trivial windowing function is expensive * to calculate, and also difficult to find SIMD optimizations. Since * the time increment on input and output is different, it is not * possible to use a FIR filter, because the taps would have to be * recalculated for every t. * * To get around the expense of calculating sinc() for every point, * we pre-calculate sinc() at a number of points, and then interpolate * for the values we want in calculations. The interpolation method * chosen is bi-cubic, which requires both the evalated function and * its derivative at every pre-sampled point. Also, if the sampled * points are spaced commensurate with the input delta_t, we notice * that the interpolating weights are the same for every input point. * This decreases the number of operations to 4 multiplies and 4 adds * for each tap, regardless of the complexity of the filtering function. * * At this point, it is possible to rearrange the problem as the sum * of 4 properly weghted FIR filters. Typical SIMD computation units * are highly optimized for FIR filters, making long filter lengths * reasonable. */ static functable_t *ft; double out_tmp[10000]; void resample_sinc_ft_s16(resample_t * r) { double *ptr; signed short *o_ptr; int i; /*int j; */ double c0, c1; /*double a; */ double start_f, start_x; int start; double center; /*double weight; */ double x, d; double scale; int n = 4; scale = r->i_inc; /* cutoff at 22050 */ /*scale = 1.0; // cutoff at 24000 */ /*scale = r->i_inc * 0.5; // cutoff at 11025 */ if(!ft){ ft = malloc(sizeof(*ft)); memset(ft,0,sizeof(*ft)); ft->len = (r->filter_length + 2) * n; ft->offset = 1.0 / n; ft->start = - ft->len * 0.5 * ft->offset; ft->func_x = functable_sinc; ft->func_dx = functable_dsinc; ft->scale = M_PI * scale; ft->func2_x = functable_window_std; ft->func2_dx = functable_window_dstd; ft->scale2 = 1.0 / r->halftaps; functable_init(ft); /*printf("len=%d offset=%g start=%g\n",ft->len,ft->offset,ft->start); */ } ptr = r->buffer; o_ptr = (signed short *) r->o_buf; center = r->o_start; start_x = center - r->halftaps; start_f = floor(start_x); start_x -= start_f; start = start_f; for (i = 0; i < r->o_samples; i++) { /*start_f = floor(center - r->halftaps); */ /*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */ x = start_f - center; d = 1; c0 = 0; c1 = 0; /*#define slow */ #ifdef slow for (j = 0; j < r->filter_length; j++) { weight = functable_eval(ft,x)*scale; /*weight = sinc(M_PI * scale * x)*scale*r->i_inc; */ /*weight *= window_func(x / r->halftaps); */ c0 += weight * ptr[(start + j + r->filter_length)*2 + 0]; c1 += weight * ptr[(start + j + r->filter_length)*2 + 1]; x += d; } #else functable_fir2(ft, &c0,&c1, x, n, ptr+(start + r->filter_length)*2, r->filter_length); c0 *= scale; c1 *= scale; #endif out_tmp[2 * i + 0] = c0; out_tmp[2 * i + 1] = c1; center += r->o_inc; start_x += r->o_inc; while(start_x>=1.0){ start_f++; start_x -= 1.0; start++; } } if(r->channels==2){ conv_short_double(r->o_buf,out_tmp,2 * r->o_samples); }else{ conv_short_double_sstr(r->o_buf,out_tmp,r->o_samples,2 * sizeof(double)); } } /******** ** float code below ********/ void resample_nearest_float(resample_t * r) { float *i_ptr, *o_ptr; int i_count = 0; double a; int i; i_ptr = (float *) r->i_buf; o_ptr = (float *) r->o_buf; a = r->o_start; i_count = 0; #define SCALE_LOOP(COPY,INC) \ for (i = 0; i < r->o_samples; i++) { \ COPY; \ a += r->o_inc; \ while (a >= 1) { \ a -= 1; \ i_ptr+=INC; \ i_count++; \ } \ o_ptr+=INC; \ } switch (r->channels) { case 1: SCALE_LOOP(o_ptr[0] = i_ptr[0], 1); break; case 2: SCALE_LOOP(o_ptr[0] = i_ptr[0]; o_ptr[1] = i_ptr[1], 2); break; default: { int n, n_chan = r->channels; SCALE_LOOP(for (n = 0; n < n_chan; n++) o_ptr[n] = i_ptr[n], n_chan); } } if (i_count != r->i_samples) { printf("handled %d in samples (expected %d)\n", i_count, r->i_samples); } } void resample_bilinear_float(resample_t * r) { float *i_ptr, *o_ptr; int o_count = 0; double b; int i; double acc0, acc1; i_ptr = (float *) r->i_buf; o_ptr = (float *) r->o_buf; acc0 = r->acc[0]; acc1 = r->acc[1]; b = r->i_start; for (i = 0; i < r->i_samples; i++) { b += r->i_inc; /*printf("in %d\n",i_ptr[0]); */ if(b>=2){ printf("not expecting b>=2\n"); } if (b >= 1) { acc0 += (1.0 - (b-r->i_inc)) * i_ptr[0]; acc1 += (1.0 - (b-r->i_inc)) * i_ptr[1]; o_ptr[0] = acc0; /*printf("out %d\n",o_ptr[0]); */ o_ptr[1] = acc1; o_ptr += 2; o_count++; b -= 1.0; acc0 = b * i_ptr[0]; acc1 = b * i_ptr[1]; } else { acc0 += i_ptr[0] * r->i_inc; acc1 += i_ptr[1] * r->i_inc; } i_ptr += 2; } r->acc[0] = acc0; r->acc[1] = acc1; if (o_count != r->o_samples) { printf("handled %d out samples (expected %d)\n", o_count, r->o_samples); } } void resample_sinc_slow_float(resample_t * r) { float *i_ptr, *o_ptr; int i, j; double c0, c1; double a; int start; double center; double weight; if (!r->buffer) { int size = r->filter_length * sizeof(float) * r->channels; printf("resample temp buffer\n"); r->buffer = malloc(size); memset(r->buffer, 0, size); } i_ptr = (float *) r->i_buf; o_ptr = (float *) r->o_buf; a = r->i_start; #define GETBUF(index,chan) (((index)<0) \ ? ((float *)(r->buffer))[((index)+r->filter_length)*2+(chan)] \ : i_ptr[(index)*2+(chan)]) { double sinx, cosx, sind, cosd; double x, d; double t; for (i = 0; i < r->o_samples; i++) { start = floor(a) - r->filter_length; center = a - r->halftaps; x = M_PI * (start - center) * r->o_inc; sinx = sin(M_PI * (start - center) * r->o_inc); cosx = cos(M_PI * (start - center) * r->o_inc); d = M_PI * r->o_inc; sind = sin(M_PI * r->o_inc); cosd = cos(M_PI * r->o_inc); c0 = 0; c1 = 0; for (j = 0; j < r->filter_length; j++) { weight = (x==0)?1:(sinx/x); /*printf("j %d sin %g cos %g\n",j,sinx,cosx); */ /*printf("j %d sin %g x %g sinc %g\n",j,sinx,x,weight); */ c0 += weight * GETBUF((start + j), 0); c1 += weight * GETBUF((start + j), 1); t = cosx * cosd - sinx * sind; sinx = cosx * sind + sinx * cosd; cosx = t; x += d; } o_ptr[0] = c0; o_ptr[1] = c1; o_ptr += 2; a += r->o_inc; } } #undef GETBUF memcpy(r->buffer, i_ptr + (r->i_samples - r->filter_length) * r->channels, r->filter_length * sizeof(float) * r->channels); } /* only works for channels == 2 ???? */ void resample_sinc_float(resample_t * r) { double *ptr; float *o_ptr; int i, j; double c0, c1; double a; int start; double center; double weight; double x0, x, d; double scale; ptr = (double *) r->buffer; o_ptr = (float *) r->o_buf; /* scale provides a cutoff frequency for the low * pass filter aspects of sinc(). scale=M_PI * will cut off at the input frequency, which is * good for up-sampling, but will cause aliasing * for downsampling. Downsampling needs to be * cut off at o_rate, thus scale=M_PI*r->i_inc. */ /* actually, it needs to be M_PI*r->i_inc*r->i_inc. * Need to research why. */ scale = M_PI*r->i_inc; for (i = 0; i < r->o_samples; i++) { a = r->o_start + i * r->o_inc; start = floor(a - r->halftaps); /*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */ center = a; /*x = M_PI * (start - center) * r->o_inc; */ /*d = M_PI * r->o_inc; */ /*x = (start - center) * r->o_inc; */ x0 = (start - center) * r->o_inc; d = r->o_inc; c0 = 0; c1 = 0; for (j = 0; j < r->filter_length; j++) { x = x0 + d * j; weight = sinc(x*scale*r->i_inc)*scale/M_PI; weight *= window_func(x/r->halftaps*r->i_inc); c0 += weight * ptr[(start + j + r->filter_length)*2 + 0]; c1 += weight * ptr[(start + j + r->filter_length)*2 + 1]; } o_ptr[0] = c0; o_ptr[1] = c1; o_ptr += 2; } } void resample_sinc_ft_float(resample_t * r) { double *ptr; float *o_ptr; int i; /*int j; */ double c0, c1; /*double a; */ double start_f, start_x; int start; double center; /*double weight; */ double x, d; double scale; int n = 4; scale = r->i_inc; /* cutoff at 22050 */ /*scale = 1.0; // cutoff at 24000 */ /*scale = r->i_inc * 0.5; // cutoff at 11025 */ if(!ft){ ft = malloc(sizeof(*ft)); memset(ft,0,sizeof(*ft)); ft->len = (r->filter_length + 2) * n; ft->offset = 1.0 / n; ft->start = - ft->len * 0.5 * ft->offset; ft->func_x = functable_sinc; ft->func_dx = functable_dsinc; ft->scale = M_PI * scale; ft->func2_x = functable_window_std; ft->func2_dx = functable_window_dstd; ft->scale2 = 1.0 / r->halftaps; functable_init(ft); /*printf("len=%d offset=%g start=%g\n",ft->len,ft->offset,ft->start); */ } ptr = r->buffer; o_ptr = (float *) r->o_buf; center = r->o_start; start_x = center - r->halftaps; start_f = floor(start_x); start_x -= start_f; start = start_f; for (i = 0; i < r->o_samples; i++) { /*start_f = floor(center - r->halftaps); */ /*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */ x = start_f - center; d = 1; c0 = 0; c1 = 0; /*#define slow */ #ifdef slow for (j = 0; j < r->filter_length; j++) { weight = functable_eval(ft,x)*scale; /*weight = sinc(M_PI * scale * x)*scale*r->i_inc; */ /*weight *= window_func(x / r->halftaps); */ c0 += weight * ptr[(start + j + r->filter_length)*2 + 0]; c1 += weight * ptr[(start + j + r->filter_length)*2 + 1]; x += d; } #else functable_fir2(ft, &c0,&c1, x, n, ptr+(start + r->filter_length)*2, r->filter_length); c0 *= scale; c1 *= scale; #endif out_tmp[2 * i + 0] = c0; out_tmp[2 * i + 1] = c1; center += r->o_inc; start_x += r->o_inc; while(start_x>=1.0){ start_f++; start_x -= 1.0; start++; } } if(r->channels==2){ conv_float_double(r->o_buf,out_tmp,2 * r->o_samples); }else{ conv_float_double_sstr(r->o_buf,out_tmp,r->o_samples,2 * sizeof(double)); } } static gboolean plugin_init (GModule *module, GstPlugin *plugin) { gst_plugin_set_longname (plugin, "Resampling routines for use in audio plugins"); return TRUE; } GstPluginDesc plugin_desc = { GST_VERSION_MAJOR, GST_VERSION_MINOR, "gstresample", plugin_init };