/* * Interplay MVE video encoder (16 bit) * Copyright (C) 2006 Jens Granseuer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "gstmvemux.h" typedef struct _GstMveEncoderData GstMveEncoderData; typedef struct _GstMveEncoding GstMveEncoding; typedef struct _GstMveApprox GstMveApprox; typedef struct _GstMveQuant GstMveQuant; #define MVE_RMASK 0x7c00 #define MVE_GMASK 0x03e0 #define MVE_BMASK 0x001f #define MVE_RSHIFT 10 #define MVE_GSHIFT 5 #define MVE_BSHIFT 0 #define MVE_RVAL(p) (((p) & MVE_RMASK) >> MVE_RSHIFT) #define MVE_GVAL(p) (((p) & MVE_GMASK) >> MVE_GSHIFT) #define MVE_BVAL(p) (((p) & MVE_BMASK) >> MVE_BSHIFT) #define MVE_COL(r,g,b) (((r) << MVE_RSHIFT) | ((g) << MVE_GSHIFT) | ((b) << MVE_BSHIFT)) struct _GstMveEncoderData { GstMveMux *mve; /* current position in frame */ guint16 x, y; /* commonly used quantization results (2 and 4 colors) for the current block */ guint16 q2block[64]; guint16 q2colors[2]; guint32 q2error; gboolean q2available; guint16 q4block[64]; guint16 q4colors[4]; guint32 q4error; gboolean q4available; }; struct _GstMveEncoding { guint8 opcode; guint8 size; guint32 (*approx) (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * res); }; #define MVE_APPROX_MAX_ERROR G_MAXUINT32 struct _GstMveApprox { guint32 error; guint8 type; guint8 data[128]; /* max 128 bytes encoded per block */ guint16 block[64]; /* block in final image */ }; struct _GstMveQuant { guint16 col; guint16 r_total, g_total, b_total; guint8 r, g, b; guint8 hits, hits_last; guint32 max_error; guint16 max_miss; }; #define mve_median(mve, src) mve_median_sub ((mve), (src), 8, 8, 0) #define mve_color_dist(c1, c2) \ mve_color_dist_rgb (MVE_RVAL (c1), MVE_GVAL (c1), MVE_BVAL (c1), \ MVE_RVAL (c2), MVE_GVAL (c2), MVE_BVAL (c2)); /* comparison function for qsort() */ static int mve_comp_solution (const void *a, const void *b) { const GArray *aa = *((GArray **) a); const GArray *bb = *((GArray **) b); if (aa->len <= 1) return G_MAXINT; else if (bb->len <= 1) return G_MININT; else return g_array_index (aa, GstMveApprox, aa->len - 2).error - g_array_index (bb, GstMveApprox, bb->len - 2).error; } static inline guint32 mve_color_dist_rgb (guint8 r1, guint8 g1, guint8 b1, guint8 r2, guint8 g2, guint8 b2) { /* euclidean distance (minus sqrt) */ gint dr = r1 - r2; gint dg = g1 - g2; gint db = b1 - b2; return dr * dr + dg * dg + db * db; } /* compute average color in a sub-block */ static guint16 mve_median_sub (const GstMveMux * mve, const guint16 * src, guint w, guint h, guint n) { guint x, y; const guint max = w * h, max2 = max >> 1; guint32 r_total = max2, g_total = max2, b_total = max2; src += ((n * w) % 8) + (((n * (8 - h)) / (12 - w)) * h * mve->width); for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { r_total += MVE_RVAL (src[x]); g_total += MVE_GVAL (src[x]); b_total += MVE_BVAL (src[x]); } src += mve->width; } return MVE_COL (r_total / max, g_total / max, b_total / max); } static void mve_quant_init (const GstMveMux * mve, GstMveQuant * q, guint n_clusters, const guint16 * data, guint w, guint h) { guint i; guint x, y; guint16 cols[4]; guint16 val[2]; /* init first cluster with lowest (darkest), second with highest (lightest) color. if we need 4 clusters, fill in first and last color in the block and hope they make for a good distribution */ cols[0] = cols[1] = cols[2] = data[0]; cols[3] = data[(h - 1) * mve->width + w - 1]; /* favour red over green and blue */ val[0] = val[1] = (MVE_RVAL (data[0]) << 1) + MVE_GVAL (data[0]) + MVE_BVAL (data[0]); for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { guint16 c = data[x]; if ((c != cols[0]) && (c != cols[1])) { guint v = (MVE_RVAL (c) << 1) + MVE_GVAL (c) + MVE_BVAL (c); if (v < val[0]) { val[0] = v; cols[0] = c; } else if (v > val[1]) { val[1] = v; cols[1] = c; } } } data += mve->width; } for (i = 0; i < n_clusters; ++i) { q[i].col = cols[i]; q[i].r = MVE_RVAL (cols[i]); q[i].g = MVE_GVAL (cols[i]); q[i].b = MVE_BVAL (cols[i]); q[i].r_total = q[i].g_total = q[i].b_total = 0; q[i].hits = q[i].hits_last = 0; q[i].max_error = 0; q[i].max_miss = 0; } } static gboolean mve_quant_update_clusters (GstMveQuant * q, guint n_clusters) { gboolean changed = FALSE; guint i; for (i = 0; i < n_clusters; ++i) { if (q[i].hits > 0) { guint16 means = MVE_COL ((q[i].r_total + q[i].hits / 2) / q[i].hits, (q[i].g_total + q[i].hits / 2) / q[i].hits, (q[i].b_total + q[i].hits / 2) / q[i].hits); if ((means != q[i].col) || (q[i].hits != q[i].hits_last)) changed = TRUE; q[i].col = means; q[i].r_total = q[i].g_total = q[i].b_total = 0; } else { guint j; guint32 max_err = 0; GstMveQuant *worst = NULL; /* try to replace unused cluster with a better representative */ for (j = 0; j < n_clusters; ++j) { if (q[j].max_error > max_err) { worst = &q[j]; max_err = worst->max_error; } } if (worst) { q[i].col = worst->max_miss; worst->max_error = 0; changed = TRUE; } } q[i].r = MVE_RVAL (q[i].col); q[i].g = MVE_GVAL (q[i].col); q[i].b = MVE_BVAL (q[i].col); q[i].hits_last = q[i].hits; q[i].hits = 0; } for (i = 0; i < n_clusters; ++i) { q[i].max_error = 0; } return changed; } /* quantize a sub-block using a k-means algorithm */ static guint32 mve_quantize (const GstMveMux * mve, const guint16 * src, guint w, guint h, guint n, guint ncols, guint16 * scratch, guint16 * cols) { guint x, y, i; GstMveQuant q[4]; const guint16 *data; guint16 *dest; guint32 error; g_assert (n <= 4 && ncols <= 4); src += ((n * w) % 8) + (((n * (8 - h)) / (12 - w)) * h * mve->width); scratch += ((n * w) % 8) + (((n * (8 - h)) / (12 - w)) * h * 8); mve_quant_init (mve, q, ncols, src, w, h); do { data = src; dest = scratch; error = 0; /* for each pixel find the closest cluster */ for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { guint16 c = data[x]; guint8 r = MVE_RVAL (c), g = MVE_GVAL (c), b = MVE_BVAL (c); guint32 minerr = MVE_APPROX_MAX_ERROR, err; GstMveQuant *best = NULL; for (i = 0; i < ncols; ++i) { err = mve_color_dist_rgb (r, g, b, q[i].r, q[i].g, q[i].b); if (err < minerr) { minerr = err; best = &q[i]; } } ++best->hits; best->r_total += r; best->g_total += g; best->b_total += b; if (minerr > best->max_error) { best->max_error = minerr; best->max_miss = c; } error += minerr; dest[x] = best->col; } data += mve->width; dest += 8; } } while (mve_quant_update_clusters (q, ncols)); /* fill cols array with result colors */ for (i = 0; i < ncols; ++i) cols[i] = q[i].col; return error; } static guint32 mve_block_error (const GstMveMux * mve, const guint16 * b1, const guint16 * b2, guint32 threshold) { /* compute error between two blocks in a frame */ guint32 e = 0; guint x, y; for (y = 0; y < 8; ++y) { for (x = 0; x < 8; ++x) { e += mve_color_dist (*b1, *b2); /* using a threshold to return early gives a huge performance bonus */ if (e >= threshold) return MVE_APPROX_MAX_ERROR; ++b1; ++b2; } b1 += mve->width - 8; b2 += mve->width - 8; } return e; } static guint32 mve_block_error_packed (const GstMveMux * mve, const guint16 * block, const guint16 * scratch) { /* compute error between a block in a frame and a (continuous) scratch pad */ guint32 e = 0; guint x, y; for (y = 0; y < 8; ++y) { for (x = 0; x < 8; ++x) { e += mve_color_dist (block[x], scratch[x]); } block += mve->width; scratch += 8; } return e; } static void mve_store_block (const GstMveMux * mve, const guint16 * block, guint16 * scratch) { /* copy block from frame to a (continuous) scratch pad */ guint y; for (y = 0; y < 8; ++y) { memcpy (scratch, block, 16); block += mve->width; scratch += 8; } } static void mve_restore_block (const GstMveMux * mve, guint16 * block, const guint16 * scratch) { /* copy block from scratch pad to frame */ guint y; for (y = 0; y < 8; ++y) { memcpy (block, scratch, 16); block += mve->width; scratch += 8; } } static guint32 mve_try_vector (GstMveEncoderData * enc, const guint16 * src, const guint16 * frame, gint pn, GstMveApprox * apx) { /* try to locate a similar 8x8 block in the given frame using a motion vector */ guint i; gint dx, dy; gint fx, fy; guint32 err; apx->error = MVE_APPROX_MAX_ERROR; for (i = 0; i < 256; ++i) { if (i < 56) { dx = 8 + (i % 7); dy = i / 7; } else { dx = -14 + ((i - 56) % 29); dy = 8 + ((i - 56) / 29); } fx = enc->x + dx * pn; fy = enc->y + dy * pn; if ((fx >= 0) && (fy >= 0) && (fx + 8 <= enc->mve->width) && (fy + 8 <= enc->mve->height)) { err = mve_block_error (enc->mve, src, frame + fy * enc->mve->width + fx, apx->error); if (err < apx->error) { apx->data[0] = i; mve_store_block (enc->mve, frame + fy * enc->mve->width + fx, apx->block); apx->error = err; if (err == 0) return 0; } } } return apx->error; } static guint32 mve_encode_0x0 (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* copy a block from the last frame (0 bytes) */ if (enc->mve->last_frame == NULL) return MVE_APPROX_MAX_ERROR; mve_store_block (enc->mve, ((guint16 *) GST_BUFFER_DATA (enc->mve->last_frame)) + enc->y * enc->mve->width + enc->x, apx->block); apx->error = mve_block_error_packed (enc->mve, src, apx->block); return apx->error; } static guint32 mve_encode_0x1 (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* copy a block from the second to last frame (0 bytes) */ if (enc->mve->second_last_frame == NULL) return MVE_APPROX_MAX_ERROR; mve_store_block (enc->mve, ((guint16 *) GST_BUFFER_DATA (enc->mve->second_last_frame)) + enc->y * enc->mve->width + enc->x, apx->block); apx->error = mve_block_error_packed (enc->mve, src, apx->block); return apx->error; } static guint32 mve_encode_0x2 (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* copy block from 2 frames ago using a motion vector (1 byte) */ if (enc->mve->quick_encoding || enc->mve->second_last_frame == NULL) return MVE_APPROX_MAX_ERROR; apx->error = mve_try_vector (enc, src, (guint16 *) GST_BUFFER_DATA (enc->mve->second_last_frame), 1, apx); return apx->error; } static guint32 mve_encode_0x3 (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* copy 8x8 block from current frame from an up/left block (1 byte) */ if (enc->mve->quick_encoding) return MVE_APPROX_MAX_ERROR; apx->error = mve_try_vector (enc, src, src - enc->mve->width * enc->y - enc->x, -1, apx); return apx->error; } static guint32 mve_encode_0x4 (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* copy a block from previous frame using a motion vector (-8/-8 to +7/+7) (1 byte) */ const GstMveMux *mve = enc->mve; guint32 err; const guint16 *frame; gint x1, x2, xi, y1, y2, yi; if (mve->last_frame == NULL) return MVE_APPROX_MAX_ERROR; frame = (guint16 *) GST_BUFFER_DATA (mve->last_frame); x1 = enc->x - 8; x2 = enc->x + 7; if (x1 < 0) x1 = 0; else if (x2 + 8 > mve->width) x2 = mve->width - 8; y1 = enc->y - 8; y2 = enc->y + 7; if (y1 < 0) y1 = 0; else if (y2 + 8 > mve->height) y2 = mve->height - 8; apx->error = MVE_APPROX_MAX_ERROR; for (yi = y1; yi <= y2; ++yi) { guint yoff = yi * mve->width; for (xi = x1; xi <= x2; ++xi) { err = mve_block_error (mve, src, frame + yoff + xi, apx->error); if (err < apx->error) { apx->data[0] = ((xi - enc->x + 8) & 0xF) | ((yi - enc->y + 8) << 4); mve_store_block (mve, frame + yoff + xi, apx->block); apx->error = err; if (err == 0) return 0; } } } return apx->error; } static guint32 mve_encode_0x5 (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* copy a block from previous frame using a motion vector (-128/-128 to +127/+127) (2 bytes) */ const GstMveMux *mve = enc->mve; guint32 err; const guint16 *frame; gint x1, x2, xi, y1, y2, yi; if (mve->quick_encoding || mve->last_frame == NULL) return MVE_APPROX_MAX_ERROR; frame = (guint16 *) GST_BUFFER_DATA (mve->last_frame); x1 = enc->x - 128; x2 = enc->x + 127; if (x1 < 0) x1 = 0; if (x2 + 8 > mve->width) x2 = mve->width - 8; y1 = enc->y - 128; y2 = enc->y + 127; if (y1 < 0) y1 = 0; if (y2 + 8 > mve->height) y2 = mve->height - 8; apx->error = MVE_APPROX_MAX_ERROR; for (yi = y1; yi <= y2; ++yi) { gint yoff = yi * mve->width; for (xi = x1; xi <= x2; ++xi) { err = mve_block_error (mve, src, frame + yoff + xi, apx->error); if (err < apx->error) { apx->data[0] = xi - enc->x; apx->data[1] = yi - enc->y; mve_store_block (mve, frame + yoff + xi, apx->block); apx->error = err; if (err == 0) return 0; } } } return apx->error; } static guint32 mve_encode_0x7a (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 2-color encoding for 2x2 solid blocks (6 bytes) */ guint16 p[2]; guint16 mean; guint32 e1, e2; guint x, y; guint8 r[2], g[2], b[2], rb, gb, bb; guint16 *block = apx->block; guint16 mask = 0x0001; guint16 flags = 0; /* calculate mean colors for the entire block */ if (!enc->q2available) { enc->q2error = mve_quantize (enc->mve, src, 8, 8, 0, 2, enc->q2block, enc->q2colors); enc->q2available = TRUE; } /* p[0] & 0x8000 */ GST_WRITE_UINT16_LE (&apx->data[0], enc->q2colors[0] | 0x8000); GST_WRITE_UINT16_LE (&apx->data[2], enc->q2colors[1]); for (x = 0; x < 2; ++x) { r[x] = MVE_RVAL (enc->q2colors[x]); g[x] = MVE_GVAL (enc->q2colors[x]); b[x] = MVE_BVAL (enc->q2colors[x]); } /* calculate mean colors for each 2x2 block and map to global colors */ for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x, mask <<= 1) { p[0] = src[enc->mve->width]; p[1] = src[enc->mve->width + 1]; rb = (MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + MVE_RVAL (p[0]) + MVE_RVAL (p[1]) + 2) / 4; gb = (MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + MVE_GVAL (p[0]) + MVE_GVAL (p[1]) + 2) / 4; bb = (MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + MVE_BVAL (p[0]) + MVE_BVAL (p[1]) + 2) / 4; e1 = mve_color_dist_rgb (rb, gb, bb, r[0], g[0], b[0]); e2 = mve_color_dist_rgb (rb, gb, bb, r[1], g[1], b[1]); if (e1 > e2) { mean = enc->q2colors[1]; flags |= mask; } else { mean = enc->q2colors[0]; } block[0] = block[1] = block[8] = block[9] = mean; src += 2; block += 2; } src += (enc->mve->width * 2) - 8; block += 8; } apx->data[4] = flags & 0x00FF; apx->data[5] = (flags & 0xFF00) >> 8; apx->error = mve_block_error_packed (enc->mve, src - enc->mve->width * 8, apx->block); return apx->error; } static guint32 mve_encode_0x7b (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* generic 2-color encoding (12 bytes) */ guint x, y; guint8 *data = apx->data; guint16 *block = apx->block; if (!enc->q2available) { enc->q2error = mve_quantize (enc->mve, src, 8, 8, 0, 2, enc->q2block, enc->q2colors); enc->q2available = TRUE; } memcpy (block, enc->q2block, 128); /* !(p[0] & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], enc->q2colors[0] & ~0x8000); GST_WRITE_UINT16_LE (&data[2], enc->q2colors[1]); data += 4; for (y = 0; y < 8; ++y) { guint8 flags = 0; for (x = 0x01; x <= 0x80; x <<= 1) { if (*block == enc->q2colors[1]) flags |= x; ++block; } *data++ = flags; } apx->error = enc->q2error; return apx->error; } static guint32 mve_encode_0x8a (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 2-color encoding for top and bottom half (16 bytes) */ guint16 cols[2]; guint32 flags; guint i, x, y, shifter; guint16 *block = apx->block; guint8 *data = apx->data; apx->error = 0; for (i = 0; i < 2; ++i) { apx->error += mve_quantize (enc->mve, src, 8, 4, i, 2, apx->block, cols); flags = 0; shifter = 0; /* p0 & 0x8000 && p2 & 0x8000 */ GST_WRITE_UINT16_LE (&data[0], cols[0] | 0x8000); GST_WRITE_UINT16_LE (&data[2], cols[1]); for (y = 0; y < 4; ++y) { for (x = 0; x < 8; ++x, ++shifter) { if (block[x] == cols[1]) flags |= 1 << shifter; } block += 8; } data[4] = flags & 0x000000FF; data[5] = (flags & 0x0000FF00) >> 8; data[6] = (flags & 0x00FF0000) >> 16; data[7] = (flags & 0xFF000000) >> 24; data += 8; } return apx->error; } static guint32 mve_encode_0x8b (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 2-color encoding for left and right half (16 bytes) */ guint16 cols[2]; guint32 flags; guint i, x, y, shifter; guint16 *block = apx->block; guint8 *data = apx->data; apx->error = 0; for (i = 0; i < 2; ++i) { apx->error += mve_quantize (enc->mve, src, 4, 8, i, 2, apx->block, cols); flags = 0; shifter = 0; /* p0 & 0x8000 && !(p2 & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], (cols[0] & ~0x8000) | (0x8000 * (i ^ 1))); GST_WRITE_UINT16_LE (&data[2], cols[1]); for (y = 0; y < 8; ++y) { for (x = 0; x < 4; ++x, ++shifter) { if (block[x] == cols[1]) flags |= 1 << shifter; } block += 8; } data[4] = flags & 0x000000FF; data[5] = (flags & 0x0000FF00) >> 8; data[6] = (flags & 0x00FF0000) >> 16; data[7] = (flags & 0xFF000000) >> 24; data += 8; block = apx->block + 4; } return apx->error; } static guint32 mve_encode_0x8c (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 2-color encoding for each 4x4 quadrant (24 bytes) */ guint16 cols[2]; guint16 flags; guint i, x, y, shifter; guint16 *block; guint8 *data = apx->data; apx->error = 0; for (i = 0; i < 4; ++i) { apx->error += mve_quantize (enc->mve, src, 4, 4, ((i & 1) << 1) | ((i & 2) >> 1), 2, apx->block, cols); /* !(p0 & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], cols[0] & ~0x8000); GST_WRITE_UINT16_LE (&data[2], cols[1]); block = apx->block + ((i / 2) * 4) + ((i % 2) * 32); flags = 0; shifter = 0; for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x, ++shifter) { if (block[x] == cols[1]) flags |= 1 << shifter; } block += 8; } data[4] = flags & 0x00FF; data[5] = (flags & 0xFF00) >> 8; data += 6; } return apx->error; } static guint32 mve_encode_0x9a (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color encoding for 2x2 solid blocks (12 bytes) */ guint16 p[2]; guint32 e, emin; guint i, x, y, mean = 0; guint8 r[4], g[4], b[4], rb, gb, bb; guint16 *block = apx->block; guint shifter = 0; guint32 flags = 0; /* calculate mean colors for the entire block */ if (!enc->q4available) { enc->q4error = mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors); enc->q4available = TRUE; } /* !(p[0] & 0x8000) && p[2] & 0x8000 */ GST_WRITE_UINT16_LE (&apx->data[0], enc->q4colors[0] & ~0x8000); GST_WRITE_UINT16_LE (&apx->data[2], enc->q4colors[1]); GST_WRITE_UINT16_LE (&apx->data[4], enc->q4colors[2] | 0x8000); GST_WRITE_UINT16_LE (&apx->data[6], enc->q4colors[3]); for (i = 0; i < 4; ++i) { r[i] = MVE_RVAL (enc->q4colors[i]); g[i] = MVE_GVAL (enc->q4colors[i]); b[i] = MVE_BVAL (enc->q4colors[i]); } /* calculate mean colors for each 2x2 block and map to global colors */ for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x, shifter += 2) { p[0] = src[enc->mve->width]; p[1] = src[enc->mve->width + 1]; rb = (MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + MVE_RVAL (p[0]) + MVE_RVAL (p[1]) + 2) / 4; gb = (MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + MVE_GVAL (p[0]) + MVE_GVAL (p[1]) + 2) / 4; bb = (MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + MVE_BVAL (p[0]) + MVE_BVAL (p[1]) + 2) / 4; emin = MVE_APPROX_MAX_ERROR; for (i = 0; i < 4; ++i) { e = mve_color_dist_rgb (rb, gb, bb, r[i], g[i], b[i]); if (e < emin) { emin = e; mean = i; } } flags |= mean << shifter; block[0] = block[1] = block[8] = block[9] = enc->q4colors[mean]; src += 2; block += 2; } src += (enc->mve->width * 2) - 8; block += 8; } apx->data[8] = flags & 0x000000FF; apx->data[9] = (flags & 0x0000FF00) >> 8; apx->data[10] = (flags & 0x00FF0000) >> 16; apx->data[11] = (flags & 0xFF000000) >> 24; apx->error = mve_block_error_packed (enc->mve, src - 8 * enc->mve->width, apx->block); return apx->error; } static guint32 mve_encode_0x9b (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color encoding for 2x1 solid blocks (16 bytes) */ guint32 e, emin; guint i, x, y, mean = 0; guint8 r[4], g[4], b[4], rb, gb, bb; guint8 *data = apx->data; guint16 *block = apx->block; guint shifter = 0; guint32 flags = 0; /* calculate mean colors for the entire block */ if (!enc->q4available) { enc->q4error = mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors); enc->q4available = TRUE; } /* p[0] & 0x8000 && !(p[2] & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], enc->q4colors[0] | 0x8000); GST_WRITE_UINT16_LE (&data[2], enc->q4colors[1]); GST_WRITE_UINT16_LE (&data[4], enc->q4colors[2] & ~0x8000); GST_WRITE_UINT16_LE (&data[6], enc->q4colors[3]); data += 8; for (i = 0; i < 4; ++i) { r[i] = MVE_RVAL (enc->q4colors[i]); g[i] = MVE_GVAL (enc->q4colors[i]); b[i] = MVE_BVAL (enc->q4colors[i]); } /* calculate mean colors for each 2x1 block and map to global colors */ for (y = 0; y < 8; ++y) { for (x = 0; x < 4; ++x, shifter += 2) { rb = (MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + 1) / 2; gb = (MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + 1) / 2; bb = (MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + 1) / 2; emin = MVE_APPROX_MAX_ERROR; for (i = 0; i < 4; ++i) { e = mve_color_dist_rgb (rb, gb, bb, r[i], g[i], b[i]); if (e < emin) { emin = e; mean = i; } } flags |= mean << shifter; block[0] = block[1] = enc->q4colors[mean]; src += 2; block += 2; } if ((y == 3) || (y == 7)) { data[0] = flags & 0x000000FF; data[1] = (flags & 0x0000FF00) >> 8; data[2] = (flags & 0x00FF0000) >> 16; data[3] = (flags & 0xFF000000) >> 24; data += 4; flags = 0; shifter = 0; } src += enc->mve->width - 8; } apx->error = mve_block_error_packed (enc->mve, src - 8 * enc->mve->width, apx->block); return apx->error; } static guint32 mve_encode_0x9c (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color encoding for 1x2 solid blocks (16 bytes) */ guint16 p2; guint32 e, emin; guint i, x, y, mean = 0; guint8 r[4], g[4], b[4], rb, gb, bb; guint8 *data = apx->data; guint16 *block = apx->block; guint shifter = 0; guint32 flags = 0; /* calculate mean colors for the entire block */ if (!enc->q4available) { enc->q4error = mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors); enc->q4available = TRUE; } /* p[0] & 0x8000 && p[2] & 0x8000 */ GST_WRITE_UINT16_LE (&data[0], enc->q4colors[0] | 0x8000); GST_WRITE_UINT16_LE (&data[2], enc->q4colors[1]); GST_WRITE_UINT16_LE (&data[4], enc->q4colors[2] | 0x8000); GST_WRITE_UINT16_LE (&data[6], enc->q4colors[3]); data += 8; for (i = 0; i < 4; ++i) { r[i] = MVE_RVAL (enc->q4colors[i]); g[i] = MVE_GVAL (enc->q4colors[i]); b[i] = MVE_BVAL (enc->q4colors[i]); } /* calculate mean colors for each 1x2 block and map to global colors */ for (y = 0; y < 4; ++y) { for (x = 0; x < 8; ++x, shifter += 2) { p2 = src[enc->mve->width]; rb = (MVE_RVAL (src[0]) + MVE_RVAL (p2) + 1) / 2; gb = (MVE_GVAL (src[0]) + MVE_GVAL (p2) + 1) / 2; bb = (MVE_BVAL (src[0]) + MVE_BVAL (p2) + 1) / 2; emin = MVE_APPROX_MAX_ERROR; for (i = 0; i < 4; ++i) { e = mve_color_dist_rgb (rb, gb, bb, r[i], g[i], b[i]); if (e < emin) { emin = e; mean = i; } } flags |= mean << shifter; block[0] = block[8] = enc->q4colors[mean]; ++src; ++block; } if ((y == 1) || (y == 3)) { data[0] = flags & 0x000000FF; data[1] = (flags & 0x0000FF00) >> 8; data[2] = (flags & 0x00FF0000) >> 16; data[3] = (flags & 0xFF000000) >> 24; data += 4; flags = 0; shifter = 0; } src += (enc->mve->width * 2) - 8; block += 8; } apx->error = mve_block_error_packed (enc->mve, src - 8 * enc->mve->width, apx->block); return apx->error; } static guint32 mve_encode_0x9d (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* generic 4-color encoding (24 bytes) */ guint32 flags = 0; guint shifter = 0; guint i, x, y; guint8 *data = apx->data; guint16 *block = apx->block; if (!enc->q4available) { enc->q4error = mve_quantize (enc->mve, src, 8, 8, 0, 4, enc->q4block, enc->q4colors); enc->q4available = TRUE; } memcpy (block, enc->q4block, 128); /* !(p[0] & 0x8000) && !(p[2] & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], enc->q4colors[0] & ~0x8000); GST_WRITE_UINT16_LE (&data[2], enc->q4colors[1]); GST_WRITE_UINT16_LE (&data[4], enc->q4colors[2] & ~0x8000); GST_WRITE_UINT16_LE (&data[6], enc->q4colors[3]); data += 8; for (y = 0; y < 8; ++y) { for (x = 0; x < 8; ++x, shifter += 2) { for (i = 0; i < 3; ++i) { if (*block == enc->q4colors[i]) break; } flags |= i << shifter; ++block; } data[0] = flags & 0x000000FF; data[1] = (flags & 0x0000FF00) >> 8; data += 2; shifter = 0; flags = 0; } apx->error = enc->q4error; return apx->error; } static guint32 mve_encode_0xaa (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color encoding for top and bottom half (32 bytes) */ guint16 cols[4]; guint32 flags; guint i, j, x, y, shifter; guint16 *block = apx->block; guint8 *data = apx->data; apx->error = 0; for (i = 0; i < 2; ++i) { apx->error += mve_quantize (enc->mve, src, 8, 4, i, 4, apx->block, cols); flags = 0; shifter = 0; /* p0 & 0x8000 && p4 & 0x8000 */ GST_WRITE_UINT16_LE (&data[0], cols[0] | 0x8000); GST_WRITE_UINT16_LE (&data[2], cols[1]); GST_WRITE_UINT16_LE (&data[4], cols[2]); GST_WRITE_UINT16_LE (&data[6], cols[3]); data += 8; for (y = 0; y < 4; ++y) { for (x = 0; x < 8; ++x, shifter += 2) { for (j = 0; j < 3; ++j) { if (block[x] == cols[j]) break; } flags |= j << shifter; } block += 8; if ((y == 1) || (y == 3)) { data[0] = flags & 0x000000FF; data[1] = (flags & 0x0000FF00) >> 8; data[2] = (flags & 0x00FF0000) >> 16; data[3] = (flags & 0xFF000000) >> 24; data += 4; flags = 0; shifter = 0; } } } return apx->error; } static guint32 mve_encode_0xab (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color encoding for left and right half (32 bytes) */ guint16 cols[4]; guint32 flags; guint i, j, x, y, shifter; guint16 *block = apx->block; guint8 *data = apx->data; apx->error = 0; for (i = 0; i < 2; ++i) { apx->error += mve_quantize (enc->mve, src, 4, 8, i, 4, apx->block, cols); flags = 0; shifter = 0; /* p0 & 0x8000 && !(p4 & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], (cols[0] & ~0x8000) | (0x8000 * (i ^ 1))); GST_WRITE_UINT16_LE (&data[2], cols[1]); GST_WRITE_UINT16_LE (&data[4], cols[2]); GST_WRITE_UINT16_LE (&data[6], cols[3]); data += 8; for (y = 0; y < 8; ++y) { for (x = 0; x < 4; ++x, shifter += 2) { for (j = 0; j < 3; ++j) { if (block[x] == cols[j]) break; } flags |= j << shifter; } block += 8; if ((y == 3) || (y == 7)) { data[0] = flags & 0x000000FF; data[1] = (flags & 0x0000FF00) >> 8; data[2] = (flags & 0x00FF0000) >> 16; data[3] = (flags & 0xFF000000) >> 24; data += 4; flags = 0; shifter = 0; } } block = apx->block + 4; } return apx->error; } static guint32 mve_encode_0xac (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color encoding for each 4x4 quadrant (48 bytes) */ guint16 cols[4]; guint32 flags; guint i, j, x, y, shifter; guint16 *block; guint8 *data = apx->data; apx->error = 0; for (i = 0; i < 4; ++i) { apx->error += mve_quantize (enc->mve, src, 4, 4, ((i & 1) << 1) | ((i & 2) >> 1), 4, apx->block, cols); /* !(p0 & 0x8000) */ GST_WRITE_UINT16_LE (&data[0], cols[0] & ~0x8000); GST_WRITE_UINT16_LE (&data[2], cols[1]); GST_WRITE_UINT16_LE (&data[4], cols[2]); GST_WRITE_UINT16_LE (&data[6], cols[3]); block = apx->block + ((i / 2) * 4) + ((i % 2) * 32); flags = 0; shifter = 0; for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x, shifter += 2) { for (j = 0; j < 3; ++j) { if (block[x] == cols[j]) break; } flags |= j << shifter; } block += 8; } data[8] = flags & 0x000000FF; data[9] = (flags & 0x0000FF00) >> 8; data[10] = (flags & 0x00FF0000) >> 16; data[11] = (flags & 0xFF000000) >> 24; data += 12; } return apx->error; } static guint32 mve_encode_0xb (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 64-color encoding (each pixel in block is a different color) (128 bytes) */ guint i; apx->error = 0; mve_store_block (enc->mve, src, apx->block); for (i = 0; i < 64; ++i) GST_WRITE_UINT16_LE (&apx->data[i << 1], apx->block[i]); return 0; } static guint32 mve_encode_0xc (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 16-color block encoding: each 2x2 block is a different color (32 bytes) */ guint i = 0, x, y; const guint w = enc->mve->width; guint16 r, g, b; /* calculate median color for each 2x2 block */ for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { r = MVE_RVAL (src[0]) + MVE_RVAL (src[1]) + MVE_RVAL (src[w]) + MVE_RVAL (src[w + 1]) + 2; g = MVE_GVAL (src[0]) + MVE_GVAL (src[1]) + MVE_GVAL (src[w]) + MVE_GVAL (src[w + 1]) + 2; b = MVE_BVAL (src[0]) + MVE_BVAL (src[1]) + MVE_BVAL (src[w]) + MVE_BVAL (src[w + 1]) + 2; apx->block[i] = apx->block[i + 1] = apx->block[i + 2] = apx->block[i + 3] = MVE_COL (r >> 2, g >> 2, b >> 2); GST_WRITE_UINT16_LE (&apx->data[i >> 1], apx->block[i]); i += 4; src += 2; } src += (w * 2) - 8; } apx->error = mve_block_error_packed (enc->mve, src - (8 * w), apx->block); return apx->error; } static guint32 mve_encode_0xd (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 4-color block encoding: each 4x4 block is a different color (8 bytes) */ guint i, x, y; guint16 *block; /* calculate median color for each 4x4 block */ for (i = 0; i < 4; ++i) { guint16 median = mve_median_sub (enc->mve, src, 4, 4, ((i & 1) << 1) | ((i & 2) >> 1)); block = apx->block + ((i / 2) * 4) + ((i % 2) * 32); for (y = 0; y < 4; ++y) { for (x = 0; x < 4; ++x) { block[x] = median; } block += 8; } GST_WRITE_UINT16_LE (&apx->data[i << 1], median); } apx->error = mve_block_error_packed (enc->mve, src, apx->block); return apx->error; } static guint32 mve_encode_0xe (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 1-color encoding: the whole block is 1 solid color (2 bytes) */ guint i; guint16 median = mve_median (enc->mve, src); for (i = 0; i < 64; ++i) apx->block[i] = median; apx->error = mve_block_error_packed (enc->mve, src, apx->block); GST_WRITE_UINT16_LE (apx->data, median); return apx->error; } static guint32 mve_encode_0xf (GstMveEncoderData * enc, const guint16 * src, GstMveApprox * apx) { /* 2 colors dithered encoding (4 bytes) */ guint i, x, y; guint32 r[2] = { 0 }, g[2] = { 0}, b[2] = { 0}; guint16 col[2]; /* find medians for both colors */ for (y = 0; y < 8; ++y) { for (x = 0; x < 8; x += 2) { guint16 p = src[x]; r[y & 1] += MVE_RVAL (p); g[y & 1] += MVE_GVAL (p); b[y & 1] += MVE_BVAL (p); p = src[x + 1]; r[(y & 1) ^ 1] += MVE_RVAL (p); g[(y & 1) ^ 1] += MVE_GVAL (p); b[(y & 1) ^ 1] += MVE_BVAL (p); } src += enc->mve->width; } col[0] = MVE_COL ((r[0] + 16) / 32, (g[0] + 16) / 32, (b[0] + 16) / 32); col[1] = MVE_COL ((r[1] + 16) / 32, (g[1] + 16) / 32, (b[1] + 16) / 32); /* store block after encoding */ for (i = 0, y = 0; y < 8; ++y) { for (x = 0; x < 4; ++x) { apx->block[i++] = col[y & 1]; apx->block[i++] = col[(y & 1) ^ 1]; } } GST_WRITE_UINT16_LE (&apx->data[0], col[0]); GST_WRITE_UINT16_LE (&apx->data[2], col[1]); apx->error = mve_block_error_packed (enc->mve, src - (8 * enc->mve->width), apx->block); return apx->error; } /* all available encodings in the preferred order, i.e. in ascending encoded size */ static const GstMveEncoding mve_encodings[] = { {0x1, 0, mve_encode_0x1}, {0x0, 0, mve_encode_0x0}, {0x3, 1, mve_encode_0x3}, {0x4, 1, mve_encode_0x4}, {0x2, 1, mve_encode_0x2}, {0xe, 2, mve_encode_0xe}, {0x5, 2, mve_encode_0x5}, {0xf, 4, mve_encode_0xf}, {0x7, 6, mve_encode_0x7a}, {0xd, 8, mve_encode_0xd}, {0x7, 12, mve_encode_0x7b}, {0x9, 12, mve_encode_0x9a}, {0x9, 16, mve_encode_0x9b}, {0x9, 16, mve_encode_0x9c}, {0x8, 16, mve_encode_0x8a}, {0x8, 16, mve_encode_0x8b}, {0x8, 24, mve_encode_0x8c}, {0x9, 24, mve_encode_0x9d}, {0xc, 32, mve_encode_0xc}, {0xa, 32, mve_encode_0xaa}, {0xa, 32, mve_encode_0xab}, {0xa, 48, mve_encode_0xac}, {0xb, 128, mve_encode_0xb} }; static gboolean mve_reorder_solution (GArray ** solution, guint16 n) { /* do a binary search to find the position to reinsert the modified element */ /* the block we need to reconsider is always at position 0 */ /* return TRUE if this block only has 1 encoding left and can be dropped */ if (mve_comp_solution (&solution[0], &solution[1]) <= 0) return FALSE; /* already sorted */ else if (solution[0]->len <= 1) /* drop this element from further calculations since we cannot improve here */ return TRUE; else { /* we know the error value can only get worse, so we can actually start at 1 */ guint lower = 1; guint upper = n - 1; gint cmp; guint idx = 0; while (upper > lower) { idx = lower + ((upper - lower) / 2); cmp = mve_comp_solution (&solution[0], &solution[idx]); if (cmp < 0) { upper = idx; } else if (cmp > 0) { lower = ++idx; } else { upper = lower = idx; } } if (idx > 0) { /* rearrange array members in new order */ GArray *a = solution[0]; memcpy (&solution[0], &solution[1], sizeof (GArray *) * idx); solution[idx] = a; } } return FALSE; } static guint32 gst_mve_find_solution (GArray ** approx, guint16 n, guint32 size, guint16 max) { /* build an array of approximations we can shuffle around */ GstMveApprox *sol_apx; GArray **solution = g_malloc (sizeof (GArray *) * n); GArray **current = solution; memcpy (solution, approx, sizeof (GArray *) * n); qsort (solution, n, sizeof (GArray *), mve_comp_solution); do { /* array is now sorted by error of the next to optimal approximation; drop optimal approximation for the best block */ /* unable to reduce size further */ if (current[0]->len <= 1) break; sol_apx = &g_array_index (current[0], GstMveApprox, current[0]->len - 1); size -= mve_encodings[sol_apx->type].size; g_array_remove_index_fast (current[0], current[0]->len - 1); sol_apx = &g_array_index (current[0], GstMveApprox, current[0]->len - 1); size += mve_encodings[sol_apx->type].size; if (mve_reorder_solution (current, n)) { ++current; --n; } } while (size > max); g_free (solution); return size; } GstFlowReturn mve_encode_frame16 (GstMveMux * mve, GstBuffer * frame, guint16 max_data) { guint16 *src; GstFlowReturn ret = GST_FLOW_ERROR; guint8 *cm = mve->chunk_code_map; GByteArray *pstream; GArray **approx; GstMveApprox apx; GstMveEncoderData enc; const guint16 blocks = (mve->width * mve->height) / 64; guint32 encoded_size = 2; /* two initial bytes for the offset */ guint i = 0, x, y; src = (guint16 *) GST_BUFFER_DATA (frame); approx = g_malloc (sizeof (GArray *) * blocks); enc.mve = mve; for (enc.y = 0; enc.y < mve->height; enc.y += 8) { for (enc.x = 0; enc.x < mve->width; enc.x += 8) { guint32 err, last_err = MVE_APPROX_MAX_ERROR; guint type = 0; guint best = 0; enc.q2available = enc.q4available = FALSE; approx[i] = g_array_new (FALSE, FALSE, sizeof (GstMveApprox)); do { err = mve_encodings[type].approx (&enc, src, &apx); if (err < last_err) { apx.type = best = type; g_array_append_val (approx[i], apx); last_err = err; } ++type; } while (last_err != 0); encoded_size += mve_encodings[best].size; ++i; src += 8; } src += 7 * mve->width; } /* find best solution with size constraints */ GST_DEBUG_OBJECT (mve, "encoded frame %u in %u bytes (lossless)", mve->video_frames + 1, encoded_size); #if 0 /* FIXME */ src = (guint16 *) GST_BUFFER_DATA (frame); for (i = 0, y = 0; y < mve->height; y += 8) { for (x = 0; x < mve->width; x += 8, ++i) { GstMveApprox *sol = &g_array_index (approx[i], GstMveApprox, approx[i]->len - 1); guint opcode = mve_encodings[sol->type].opcode; guint j, k; if (sol->error > 0) GST_WARNING_OBJECT (mve, "error is %lu for %d/%d (0x%x)", sol->error, x, y, opcode); for (j = 0; j < 8; ++j) { guint16 *o = src + j * mve->width; guint16 *c = sol->block + j * 8; if (memcmp (o, c, 16)) { GST_WARNING_OBJECT (mve, "opcode 0x%x (type %d) at %d/%d, line %d:", opcode, sol->type, x, y, j + 1); for (k = 0; k < 8; ++k) { o = src + k * mve->width; c = sol->block + k * 8; GST_WARNING_OBJECT (mve, "%d should be: %4d %4d %4d %4d %4d %4d %4d %4d", k, o[0], o[1], o[2], o[3], o[4], o[5], o[6], o[7]); GST_WARNING_OBJECT (mve, "%d but is : %4d %4d %4d %4d %4d %4d %4d %4d", k, c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); } } } src += 8; } src += 7 * mve->width; } #endif if (encoded_size > max_data) { encoded_size = gst_mve_find_solution (approx, blocks, encoded_size, max_data); if (encoded_size > max_data) { GST_ERROR_OBJECT (mve, "unable to compress frame to less than %d bytes", encoded_size); for (i = 0; i < blocks; ++i) g_array_free (approx[i], TRUE); goto done; } GST_DEBUG_OBJECT (mve, "compressed frame %u to %u bytes (lossy)", mve->video_frames + 1, encoded_size); } mve->chunk_video = g_byte_array_sized_new (encoded_size); /* reserve two bytes for the offset pointer we'll fill in later */ g_byte_array_set_size (mve->chunk_video, 2); pstream = g_byte_array_new (); /* encode */ src = (guint16 *) GST_BUFFER_DATA (frame); for (i = 0, y = 0; y < mve->height; y += 8) { for (x = 0; x < mve->width; x += 8, ++i) { GstMveApprox *sol = &g_array_index (approx[i], GstMveApprox, approx[i]->len - 1); guint opcode = mve_encodings[sol->type].opcode; GByteArray *dest; if (opcode >= 0x2 && opcode <= 0x4) dest = pstream; else dest = mve->chunk_video; g_byte_array_append (dest, sol->data, mve_encodings[sol->type].size); if (i & 1) { *cm |= opcode << 4; ++cm; } else *cm = opcode; /* modify the frame to match the image we actually encoded */ if (sol->error > 0) mve_restore_block (mve, src, sol->block); src += 8; g_array_free (approx[i], TRUE); } src += 7 * mve->width; } /* now update the offset */ GST_WRITE_UINT16_LE (mve->chunk_video->data, mve->chunk_video->len); g_byte_array_append (mve->chunk_video, pstream->data, pstream->len); g_byte_array_free (pstream, TRUE); ret = GST_FLOW_OK; done: g_free (approx); return ret; }