/* ** ** File: fmopl.c -- software implementation of FM sound generator ** ** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development ** ** Version 0.36f ** */ /* preliminary : Problem : note: */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdarg.h> /*#include "driver.h" *//* use M.A.M.E. */ #include "fmopl.h" #include <math.h> /* MPC - hacks */ #include "types.h" #include "log.h" #ifndef PI #define PI 3.14159265358979323846 #endif /* -------------------- preliminary define section --------------------- */ /* attack/decay rate time rate */ #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ #define FREQ_BITS 24 /* frequency turn */ /* counter bits = 20 , octerve 7 */ #define FREQ_RATE (1<<(FREQ_BITS-20)) #define TL_BITS (FREQ_BITS+2) /* final output shift , limit minimum and maximum */ #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) #define OPL_MINOUT (-0x8000<<OPL_OUTSB) /* -------------------- quality selection --------------------- */ /* sinwave entries */ /* used static memory = SIN_ENT * 4 (byte) */ #define SIN_ENT 2048 /* output level entries (envelope,sinwave) */ /* envelope counter lower bits */ #define ENV_BITS 16 /* envelope output entries */ #define EG_ENT 4096 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ /* used static memory = EG_ENT*4 (byte) */ #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ #define EG_DED EG_OFF #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ #define EG_AED EG_DST #define EG_AST 0 /* ATTACK START */ #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ /* LFO table entries */ #define VIB_ENT 512 #define VIB_SHIFT (32-9) #define AMS_ENT 512 #define AMS_SHIFT (32-9) #define VIB_RATE 256 /* -------------------- local defines , macros --------------------- */ /* register number to channel number , slot offset */ #define SLOT1 0 #define SLOT2 1 /* envelope phase */ #define ENV_MOD_RR 0x00 #define ENV_MOD_DR 0x01 #define ENV_MOD_AR 0x02 /* -------------------- tables --------------------- */ static const int slot_array[32] = { 0, 2, 4, 1, 3, 5, -1, -1, 6, 8, 10, 7, 9, 11, -1, -1, 12, 14, 16, 13, 15, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; /* key scale level */ #define ML(x) ((UINT32)((x)*0.1875*2/EG_STEP)) static const UINT32 KSL_TABLE[8 * 16] = { /* OCT 0 */ ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), /* OCT 1 */ ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.750), ML (1.125), ML (1.500), ML (1.875), ML (2.250), ML (2.625), ML (3.000), /* OCT 2 */ ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (0.000), ML (1.125), ML (1.875), ML (2.625), ML (3.000), ML (3.750), ML (4.125), ML (4.500), ML (4.875), ML (5.250), ML (5.625), ML (6.000), /* OCT 3 */ ML (0.000), ML (0.000), ML (0.000), ML (1.875), ML (3.000), ML (4.125), ML (4.875), ML (5.625), ML (6.000), ML (6.750), ML (7.125), ML (7.500), ML (7.875), ML (8.250), ML (8.625), ML (9.000), /* OCT 4 */ ML (0.000), ML (0.000), ML (3.000), ML (4.875), ML (6.000), ML (7.125), ML (7.875), ML (8.625), ML (9.000), ML (9.750), ML (10.125), ML (10.500), ML (10.875), ML (11.250), ML (11.625), ML (12.000), /* OCT 5 */ ML (0.000), ML (3.000), ML (6.000), ML (7.875), ML (9.000), ML (10.125), ML (10.875), ML (11.625), ML (12.000), ML (12.750), ML (13.125), ML (13.500), ML (13.875), ML (14.250), ML (14.625), ML (15.000), /* OCT 6 */ ML (0.000), ML (6.000), ML (9.000), ML (10.875), ML (12.000), ML (13.125), ML (13.875), ML (14.625), ML (15.000), ML (15.750), ML (16.125), ML (16.500), ML (16.875), ML (17.250), ML (17.625), ML (18.000), /* OCT 7 */ ML (0.000), ML (9.000), ML (12.000), ML (13.875), ML (15.000), ML (16.125), ML (16.875), ML (17.625), ML (18.000), ML (18.750), ML (19.125), ML (19.500), ML (19.875), ML (20.250), ML (20.625), ML (21.000) }; #undef ML /* sustain lebel table (3db per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ #define SC(db) ((INT32) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST) static const INT32 SL_TABLE[16] = { SC (0), SC (1), SC (2), SC (3), SC (4), SC (5), SC (6), SC (7), SC (8), SC (9), SC (10), SC (11), SC (12), SC (13), SC (14), SC (31) }; #undef SC #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ /* TL_TABLE[ 0 to TL_MAX ] : plus section */ /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ static INT32 *TL_TABLE; /* pointers to TL_TABLE with sinwave output offset */ static INT32 **SIN_TABLE; /* LFO table */ static INT32 *AMS_TABLE; static INT32 *VIB_TABLE; /* envelope output curve table */ /* attack + decay + OFF */ static INT32 ENV_CURVE[2 * EG_ENT + 1]; /* multiple table */ #define ML(x) ((UINT32) (2*(x))) static const UINT32 MUL_TABLE[16] = { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ ML (0.50), ML (1.00), ML (2.00), ML (3.00), ML (4.00), ML (5.00), ML (6.00), ML (7.00), ML (8.00), ML (9.00), ML (10.00), ML (10.00), ML (12.00), ML (12.00), ML (15.00), ML (15.00) }; #undef ML /* dummy attack / decay rate ( when rate == 0 ) */ static INT32 RATE_0[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* -------------------- static state --------------------- */ /* lock level of common table */ static int num_lock = 0; /* work table */ static void *cur_chip = NULL; /* current chip point */ /* currenct chip state */ /* static FMSAMPLE *bufL,*bufR; */ static OPL_CH *S_CH; static OPL_CH *E_CH; OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; static INT32 outd[1]; static INT32 ams; static INT32 vib; INT32 *ams_table; INT32 *vib_table; static INT32 amsIncr; static INT32 vibIncr; static INT32 feedback2; /* connect for SLOT 2 */ /* log output level */ #define LOG_ERR 3 /* ERROR */ #define LOG_WAR 2 /* WARNING */ #define LOG_INF 1 /* INFORMATION */ #define LOG_LEVEL LOG_INF /* #define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x */ #define LOG(n,x) if( (n)>=LOG_LEVEL ) log_printf x /* --------------------- subroutines --------------------- */ INLINE int Limit (int val, int max, int min) { if (val > max) val = max; else if (val < min) val = min; return val; } /* status set and IRQ handling */ INLINE void OPL_STATUS_SET (FM_OPL * OPL, int flag) { /* set status flag */ OPL->status |= flag; if (!(OPL->status & 0x80)) { if (OPL->status & OPL->statusmask) { /* IRQ on */ OPL->status |= 0x80; /* callback user interrupt handler (IRQ is OFF to ON) */ if (OPL->IRQHandler) (OPL->IRQHandler) (OPL->IRQParam, 1); } } } /* status reset and IRQ handling */ INLINE void OPL_STATUS_RESET (FM_OPL * OPL, int flag) { /* reset status flag */ OPL->status &= ~flag; if ((OPL->status & 0x80)) { if (!(OPL->status & OPL->statusmask)) { OPL->status &= 0x7f; /* callback user interrupt handler (IRQ is ON to OFF) */ if (OPL->IRQHandler) (OPL->IRQHandler) (OPL->IRQParam, 0); } } } /* IRQ mask set */ INLINE void OPL_STATUSMASK_SET (FM_OPL * OPL, int flag) { OPL->statusmask = flag; /* IRQ handling check */ OPL_STATUS_SET (OPL, 0); OPL_STATUS_RESET (OPL, 0); } /* ----- key on ----- */ INLINE void OPL_KEYON (OPL_SLOT * SLOT) { /* sin wave restart */ SLOT->Cnt = 0; /* set attack */ SLOT->evm = ENV_MOD_AR; SLOT->evs = SLOT->evsa; SLOT->evc = EG_AST; SLOT->eve = EG_AED; } /* ----- key off ----- */ INLINE void OPL_KEYOFF (OPL_SLOT * SLOT) { if (SLOT->evm > ENV_MOD_RR) { /* set envelope counter from envleope output */ SLOT->evm = ENV_MOD_RR; if (!(SLOT->evc & EG_DST)) /* SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; */ SLOT->evc = EG_DST; SLOT->eve = EG_DED; SLOT->evs = SLOT->evsr; } } /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ /* return : envelope output */ INLINE UINT32 OPL_CALC_SLOT (OPL_SLOT * SLOT) { /* calcrate envelope generator */ if ((SLOT->evc += SLOT->evs) >= SLOT->eve) { switch (SLOT->evm) { case ENV_MOD_AR: /* ATTACK -> DECAY1 */ /* next DR */ SLOT->evm = ENV_MOD_DR; SLOT->evc = EG_DST; SLOT->eve = SLOT->SL; SLOT->evs = SLOT->evsd; break; case ENV_MOD_DR: /* DECAY -> SL or RR */ SLOT->evc = SLOT->SL; SLOT->eve = EG_DED; if (SLOT->eg_typ) { SLOT->evs = 0; } else { SLOT->evm = ENV_MOD_RR; SLOT->evs = SLOT->evsr; } break; case ENV_MOD_RR: /* RR -> OFF */ SLOT->evc = EG_OFF; SLOT->eve = EG_OFF + 1; SLOT->evs = 0; break; } } /* calcrate envelope */ return SLOT->TLL + ENV_CURVE[SLOT->evc >> ENV_BITS] + (SLOT->ams ? ams : 0); } /* set algorythm connection */ static void set_algorythm (OPL_CH * CH) { INT32 *carrier = &outd[0]; CH->connect1 = CH->CON ? carrier : &feedback2; CH->connect2 = carrier; } /* ---------- frequency counter for operater update ---------- */ INLINE void CALC_FCSLOT (OPL_CH * CH, OPL_SLOT * SLOT) { int ksr; /* frequency step counter */ SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if (SLOT->ksr != ksr) { SLOT->ksr = ksr; /* attack , decay rate recalcration */ SLOT->evsa = SLOT->AR[ksr]; SLOT->evsd = SLOT->DR[ksr]; SLOT->evsr = SLOT->RR[ksr]; } SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); } /* set multi,am,vib,EG-TYP,KSR,mul */ INLINE void set_mul (FM_OPL * OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot / 2]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; SLOT->mul = MUL_TABLE[v & 0x0f]; SLOT->KSR = (v & 0x10) ? 0 : 2; SLOT->eg_typ = (v & 0x20) >> 5; SLOT->vib = (v & 0x40); SLOT->ams = (v & 0x80); CALC_FCSLOT (CH, SLOT); } /* set ksl & tl */ INLINE void set_ksl_tl (FM_OPL * OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot / 2]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; int ksl = v >> 6; /* 0 / 1.5 / 3 / 6 db/OCT */ SLOT->ksl = ksl ? 3 - ksl : 31; SLOT->TL = (INT32) (((v & 0x3f) * (0.75 / EG_STEP))); /* 0.75db step */ if (!(OPL->mode & 0x80)) { /* not CSM latch total level */ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); } } /* set attack rate & decay rate */ INLINE void set_ar_dr (FM_OPL * OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot / 2]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; int ar = v >> 4; int dr = v & 0x0f; SLOT->AR = ar ? &OPL->AR_TABLE[ar << 2] : RATE_0; SLOT->evsa = SLOT->AR[SLOT->ksr]; if (SLOT->evm == ENV_MOD_AR) SLOT->evs = SLOT->evsa; SLOT->DR = dr ? &OPL->DR_TABLE[dr << 2] : RATE_0; SLOT->evsd = SLOT->DR[SLOT->ksr]; if (SLOT->evm == ENV_MOD_DR) SLOT->evs = SLOT->evsd; } /* set sustain level & release rate */ INLINE void set_sl_rr (FM_OPL * OPL, int slot, int v) { OPL_CH *CH = &OPL->P_CH[slot / 2]; OPL_SLOT *SLOT = &CH->SLOT[slot & 1]; int sl = v >> 4; int rr = v & 0x0f; SLOT->SL = SL_TABLE[sl]; if (SLOT->evm == ENV_MOD_DR) SLOT->eve = SLOT->SL; SLOT->RR = &OPL->DR_TABLE[rr << 2]; SLOT->evsr = SLOT->RR[SLOT->ksr]; if (SLOT->evm == ENV_MOD_RR) SLOT->evs = SLOT->evsr; } /* operator output calcrator */ #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] /* ---------- calcrate one of channel ---------- */ INLINE void OPL_CALC_CH (OPL_CH * CH) { UINT32 env_out; OPL_SLOT *SLOT; feedback2 = 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env_out = OPL_CALC_SLOT (SLOT); if (env_out < EG_ENT - 1) { /* PG */ if (SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ if (CH->FB) { int feedback1 = (CH->op1_out[0] + CH->op1_out[1]) >> CH->FB; CH->op1_out[1] = CH->op1_out[0]; *CH->connect1 += CH->op1_out[0] = OP_OUT (SLOT, env_out, feedback1); } else { *CH->connect1 += OP_OUT (SLOT, env_out, 0); } } else { CH->op1_out[1] = CH->op1_out[0]; CH->op1_out[0] = 0; } /* SLOT 2 */ SLOT = &CH->SLOT[SLOT2]; env_out = OPL_CALC_SLOT (SLOT); if (env_out < EG_ENT - 1) { /* PG */ if (SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ outd[0] += OP_OUT (SLOT, env_out, feedback2); } } /* ---------- calcrate rythm block ---------- */ #define WHITE_NOISE_db 6.0 INLINE void OPL_CALC_RH (OPL_CH * CH) { UINT32 env_tam, env_sd, env_top, env_hh; int whitenoise = (rand () & 1) * ((int) (WHITE_NOISE_db / EG_STEP)); INT32 tone8; OPL_SLOT *SLOT; int env_out; /* BD : same as FM serial mode and output level is large */ feedback2 = 0; /* SLOT 1 */ SLOT = &CH[6].SLOT[SLOT1]; env_out = OPL_CALC_SLOT (SLOT); if (env_out < EG_ENT - 1) { /* PG */ if (SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ if (CH[6].FB) { int feedback1 = (CH[6].op1_out[0] + CH[6].op1_out[1]) >> CH[6].FB; CH[6].op1_out[1] = CH[6].op1_out[0]; feedback2 = CH[6].op1_out[0] = OP_OUT (SLOT, env_out, feedback1); } else { feedback2 = OP_OUT (SLOT, env_out, 0); } } else { feedback2 = 0; CH[6].op1_out[1] = CH[6].op1_out[0]; CH[6].op1_out[0] = 0; } /* SLOT 2 */ SLOT = &CH[6].SLOT[SLOT2]; env_out = OPL_CALC_SLOT (SLOT); if (env_out < EG_ENT - 1) { /* PG */ if (SLOT->vib) SLOT->Cnt += (SLOT->Incr * vib / VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ outd[0] += OP_OUT (SLOT, env_out, feedback2) * 2; } /* SD (17) = mul14[fnum7] + white noise TAM (15) = mul15[fnum8] TOP (18) = fnum6(mul18[fnum8]+whitenoise) HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise */ env_sd = OPL_CALC_SLOT (SLOT7_2) + whitenoise; env_tam = OPL_CALC_SLOT (SLOT8_1); env_top = OPL_CALC_SLOT (SLOT8_2); env_hh = OPL_CALC_SLOT (SLOT7_1) + whitenoise; /* PG */ if (SLOT7_1->vib) SLOT7_1->Cnt += (2 * SLOT7_1->Incr * vib / VIB_RATE); else SLOT7_1->Cnt += 2 * SLOT7_1->Incr; if (SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc * 8) * vib / VIB_RATE); else SLOT7_2->Cnt += (CH[7].fc * 8); if (SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr * vib / VIB_RATE); else SLOT8_1->Cnt += SLOT8_1->Incr; if (SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc * 48) * vib / VIB_RATE); else SLOT8_2->Cnt += (CH[8].fc * 48); tone8 = OP_OUT (SLOT8_2, whitenoise, 0); /* SD */ if (env_sd < EG_ENT - 1) outd[0] += OP_OUT (SLOT7_1, env_sd, 0) * 8; /* TAM */ if (env_tam < EG_ENT - 1) outd[0] += OP_OUT (SLOT8_1, env_tam, 0) * 2; /* TOP-CY */ if (env_top < EG_ENT - 1) outd[0] += OP_OUT (SLOT7_2, env_top, tone8) * 2; /* HH */ if (env_hh < EG_ENT - 1) outd[0] += OP_OUT (SLOT7_2, env_hh, tone8) * 2; } /* ----------- initialize time tabls ----------- */ static void init_timetables (FM_OPL * OPL, int ARRATE, int DRRATE) { int i; double rate; /* make attack rate & decay rate tables */ for (i = 0; i < 4; i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; for (i = 4; i <= 60; i++) { rate = OPL->freqbase; /* frequency rate */ if (i < 60) rate *= 1.0 + (i & 3) * 0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ rate *= 1 << ((i >> 2) - 1); /* b2-5 : shift bit */ rate *= (double) (EG_ENT << ENV_BITS); OPL->AR_TABLE[i] = (INT32) (rate / ARRATE); OPL->DR_TABLE[i] = (INT32) (rate / DRRATE); } for (i = 60; i < 76; i++) { OPL->AR_TABLE[i] = EG_AED - 1; OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; } #if 0 for (i = 0; i < 64; i++) { /* make for overflow area */ LOG (LOG_WAR, ("rate %2d , ar %f ms , dr %f ms \n", i, ((double) (EG_ENT << ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), ((double) (EG_ENT << ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate))); } #endif } /* ---------- generic table initialize ---------- */ static int OPLOpenTable (void) { int s, t; double rate; int i, j; double pom; /* allocate dynamic tables */ if ((TL_TABLE = malloc (TL_MAX * 2 * sizeof (INT32))) == NULL) return 0; if ((SIN_TABLE = malloc (SIN_ENT * 4 * sizeof (INT32 *))) == NULL) { free (TL_TABLE); return 0; } if ((AMS_TABLE = malloc (AMS_ENT * 2 * sizeof (INT32))) == NULL) { free (TL_TABLE); free (SIN_TABLE); return 0; } if ((VIB_TABLE = malloc (VIB_ENT * 2 * sizeof (INT32))) == NULL) { free (TL_TABLE); free (SIN_TABLE); free (AMS_TABLE); return 0; } /* make total level table */ for (t = 0; t < EG_ENT - 1; t++) { rate = ((1 << TL_BITS) - 1) / pow (10, EG_STEP * t / 20); /* dB -> voltage */ TL_TABLE[t] = (int) rate; TL_TABLE[TL_MAX + t] = -TL_TABLE[t]; /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ } /* fill volume off area */ for (t = EG_ENT - 1; t < TL_MAX; t++) { TL_TABLE[t] = TL_TABLE[TL_MAX + t] = 0; } /* make sinwave table (total level offet) */ /* degree 0 = degree 180 = off */ SIN_TABLE[0] = SIN_TABLE[SIN_ENT / 2] = &TL_TABLE[EG_ENT - 1]; for (s = 1; s <= SIN_ENT / 4; s++) { pom = sin (2 * PI * s / SIN_ENT); /* sin */ pom = 20 * log10 (1 / pom); /* decibel */ j = (int) (pom / EG_STEP); /* TL_TABLE steps */ /* degree 0 - 90 , degree 180 - 90 : plus section */ SIN_TABLE[s] = SIN_TABLE[SIN_ENT / 2 - s] = &TL_TABLE[j]; /* degree 180 - 270 , degree 360 - 270 : minus section */ SIN_TABLE[SIN_ENT / 2 + s] = SIN_TABLE[SIN_ENT - s] = &TL_TABLE[TL_MAX + j]; /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ } for (s = 0; s < SIN_ENT; s++) { SIN_TABLE[SIN_ENT * 1 + s] = s < (SIN_ENT / 2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; SIN_TABLE[SIN_ENT * 2 + s] = SIN_TABLE[s % (SIN_ENT / 2)]; SIN_TABLE[SIN_ENT * 3 + s] = (s / (SIN_ENT / 4)) & 1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT * 2 + s]; } /* envelope counter -> envelope output table */ for (i = 0; i < EG_ENT; i++) { /* ATTACK curve */ pom = (float) pow (((double) (EG_ENT - 1 - i) / EG_ENT), 8) * EG_ENT; /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ ENV_CURVE[i] = (int) pom; /* DECAY ,RELEASE curve */ ENV_CURVE[(EG_DST >> ENV_BITS) + i] = i; } /* off */ ENV_CURVE[EG_OFF >> ENV_BITS] = EG_ENT - 1; /* make LFO ams table */ for (i = 0; i < AMS_ENT; i++) { pom = (1.0 + sin (2 * PI * i / AMS_ENT)) / 2; /* sin */ AMS_TABLE[i] = (INT32) ((1.0 / EG_STEP) * pom); /* 1dB */ AMS_TABLE[AMS_ENT + i] = (INT32) ((4.8 / EG_STEP) * pom); /* 4.8dB */ } /* make LFO vibrate table */ for (i = 0; i < VIB_ENT; i++) { /* 100cent = 1seminote = 6% ?? */ pom = (double) VIB_RATE *0.06 * sin (2 * PI * i / VIB_ENT); /* +-100sect step */ VIB_TABLE[i] = VIB_RATE + (INT32) (pom * 0.07); /* +- 7cent */ VIB_TABLE[VIB_ENT + i] = VIB_RATE + (INT32) (pom * 0.14); /* +-14cent */ /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ } return 1; } static void OPLCloseTable (void) { free (TL_TABLE); free (SIN_TABLE); free (AMS_TABLE); free (VIB_TABLE); } /* CSM Key Controll */ INLINE void CSMKeyControll (OPL_CH * CH) { OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; /* all key off */ OPL_KEYOFF (slot1); OPL_KEYOFF (slot2); /* total level latch */ slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl); slot1->TLL = slot1->TL + (CH->ksl_base >> slot1->ksl); /* key on */ CH->op1_out[0] = CH->op1_out[1] = 0; OPL_KEYON (slot1); OPL_KEYON (slot2); } /* ---------- opl initialize ---------- */ static void OPL_initalize (FM_OPL * OPL) { int fn; /* frequency base */ OPL->freqbase = (OPL->rate) ? ((double) OPL->clock / OPL->rate) / 72 : 0; /* Timer base time */ OPL->TimerBase = 1.0 / ((double) OPL->clock / 72.0); /* make time tables */ init_timetables (OPL, OPL_ARRATE, OPL_DRRATE); /* make fnumber -> increment counter table */ for (fn = 0; fn < 1024; fn++) { OPL->FN_TABLE[fn] = (UINT32) (OPL->freqbase * fn * FREQ_RATE * (1 << 7) / 2); } /* LFO freq.table */ OPL->amsIncr = (INT32) (OPL->rate ? (double) AMS_ENT * (1 << AMS_SHIFT) / OPL->rate * 3.7 * ((double) OPL->clock / 3600000) : 0); OPL->vibIncr = (INT32) (OPL->rate ? (double) VIB_ENT * (1 << VIB_SHIFT) / OPL->rate * 6.4 * ((double) OPL->clock / 3600000) : 0); } /* ---------- write a OPL registers ---------- */ static void OPLWriteReg (FM_OPL * OPL, int r, int v) { OPL_CH *CH; int slot; unsigned int block_fnum; switch (r & 0xe0) { case 0x00: /* 00-1f:controll */ switch (r & 0x1f) { case 0x01: /* wave selector enable */ if (OPL->type & OPL_TYPE_WAVESEL) { OPL->wavesel = v & 0x20; if (!OPL->wavesel) { /* preset compatible mode */ int c; for (c = 0; c < OPL->max_ch; c++) { OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; } } } return; case 0x02: /* Timer 1 */ OPL->T[0] = (256 - v) * 4; break; case 0x03: /* Timer 2 */ OPL->T[1] = (256 - v) * 16; return; case 0x04: /* IRQ clear / mask and Timer enable */ if (v & 0x80) { /* IRQ flag clear */ OPL_STATUS_RESET (OPL, 0x7f); } else { /* set IRQ mask ,timer enable */ UINT8 st1 = v & 1; UINT8 st2 = (v >> 1) & 1; /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ OPL_STATUS_RESET (OPL, v & 0x78); OPL_STATUSMASK_SET (OPL, ((~v) & 0x78) | 0x01); /* timer 2 */ if (OPL->st[1] != st2) { double interval = st2 ? (double) OPL->T[1] * OPL->TimerBase : 0.0; OPL->st[1] = st2; if (OPL->TimerHandler) (OPL->TimerHandler) (OPL->TimerParam + 1, interval); } /* timer 1 */ if (OPL->st[0] != st1) { double interval = st1 ? (double) OPL->T[0] * OPL->TimerBase : 0.0; OPL->st[0] = st1; if (OPL->TimerHandler) (OPL->TimerHandler) (OPL->TimerParam + 0, interval); } } return; #if BUILD_Y8950 case 0x06: /* Key Board OUT */ if (OPL->type & OPL_TYPE_KEYBOARD) { if (OPL->keyboardhandler_w) OPL->keyboardhandler_w (OPL->keyboard_param, v); else LOG (LOG_WAR, ("OPL:write unmapped KEYBOARD port\n")); } return; case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ if (OPL->type & OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v); return; case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ OPL->mode = v; v &= 0x1f; /* for DELTA-T unit */ case 0x09: /* START ADD */ case 0x0a: case 0x0b: /* STOP ADD */ case 0x0c: case 0x0d: /* PRESCALE */ case 0x0e: case 0x0f: /* ADPCM data */ case 0x10: /* DELTA-N */ case 0x11: /* DELTA-N */ case 0x12: /* EG-CTRL */ if (OPL->type & OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write (OPL->deltat, r - 0x07, v); return; #if 0 case 0x15: /* DAC data */ case 0x16: case 0x17: /* SHIFT */ return; case 0x18: /* I/O CTRL (Direction) */ if (OPL->type & OPL_TYPE_IO) OPL->portDirection = v & 0x0f; return; case 0x19: /* I/O DATA */ if (OPL->type & OPL_TYPE_IO) { OPL->portLatch = v; if (OPL->porthandler_w) OPL->porthandler_w (OPL->port_param, v & OPL->portDirection); } return; case 0x1a: /* PCM data */ return; #endif #endif } break; case 0x20: /* am,vib,ksr,eg type,mul */ slot = slot_array[r & 0x1f]; if (slot == -1) return; set_mul (OPL, slot, v); return; case 0x40: slot = slot_array[r & 0x1f]; if (slot == -1) return; set_ksl_tl (OPL, slot, v); return; case 0x60: slot = slot_array[r & 0x1f]; if (slot == -1) return; set_ar_dr (OPL, slot, v); return; case 0x80: slot = slot_array[r & 0x1f]; if (slot == -1) return; set_sl_rr (OPL, slot, v); return; case 0xa0: switch (r) { case 0xbd: /* amsep,vibdep,r,bd,sd,tom,tc,hh */ { UINT8 rkey = OPL->rythm ^ v; OPL->ams_table = &AMS_TABLE[v & 0x80 ? AMS_ENT : 0]; OPL->vib_table = &VIB_TABLE[v & 0x40 ? VIB_ENT : 0]; OPL->rythm = v & 0x3f; if (OPL->rythm & 0x20) { #if 0 usrintf_showmessage ("OPL Rythm mode select"); #endif /* BD key on/off */ if (rkey & 0x10) { if (v & 0x10) { OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT1]); OPL_KEYON (&OPL->P_CH[6].SLOT[SLOT2]); } else { OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT1]); OPL_KEYOFF (&OPL->P_CH[6].SLOT[SLOT2]); } } /* SD key on/off */ if (rkey & 0x08) { if (v & 0x08) OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT2]); else OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT2]); } /* TAM key on/off */ if (rkey & 0x04) { if (v & 0x04) OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT1]); else OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT1]); } /* TOP-CY key on/off */ if (rkey & 0x02) { if (v & 0x02) OPL_KEYON (&OPL->P_CH[8].SLOT[SLOT2]); else OPL_KEYOFF (&OPL->P_CH[8].SLOT[SLOT2]); } /* HH key on/off */ if (rkey & 0x01) { if (v & 0x01) OPL_KEYON (&OPL->P_CH[7].SLOT[SLOT1]); else OPL_KEYOFF (&OPL->P_CH[7].SLOT[SLOT1]); } } } return; } /* keyon,block,fnum */ if ((r & 0x0f) > 8) return; CH = &OPL->P_CH[r & 0x0f]; if (!(r & 0x10)) { /* a0-a8 */ block_fnum = (CH->block_fnum & 0x1f00) | v; } else { /* b0-b8 */ int keyon = (v >> 5) & 1; block_fnum = ((v & 0x1f) << 8) | (CH->block_fnum & 0xff); if (CH->keyon != keyon) { if ((CH->keyon = keyon)) { CH->op1_out[0] = CH->op1_out[1] = 0; OPL_KEYON (&CH->SLOT[SLOT1]); OPL_KEYON (&CH->SLOT[SLOT2]); } else { OPL_KEYOFF (&CH->SLOT[SLOT1]); OPL_KEYOFF (&CH->SLOT[SLOT2]); } } } /* update */ if (CH->block_fnum != block_fnum) { int blockRv = 7 - (block_fnum >> 10); int fnum = block_fnum & 0x3ff; CH->block_fnum = block_fnum; CH->ksl_base = KSL_TABLE[block_fnum >> 6]; CH->fc = OPL->FN_TABLE[fnum] >> blockRv; CH->kcode = CH->block_fnum >> 9; if ((OPL->mode & 0x40) && CH->block_fnum & 0x100) CH->kcode |= 1; CALC_FCSLOT (CH, &CH->SLOT[SLOT1]); CALC_FCSLOT (CH, &CH->SLOT[SLOT2]); } return; case 0xc0: /* FB,C */ if ((r & 0x0f) > 8) return; CH = &OPL->P_CH[r & 0x0f]; { int feedback = (v >> 1) & 7; CH->FB = feedback ? (8 + 1) - feedback : 0; CH->CON = v & 1; set_algorythm (CH); } return; case 0xe0: /* wave type */ slot = slot_array[r & 0x1f]; if (slot == -1) return; CH = &OPL->P_CH[slot / 2]; if (OPL->wavesel) { /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ CH->SLOT[slot & 1].wavetable = &SIN_TABLE[(v & 0x03) * SIN_ENT]; } return; } } /* lock/unlock for common table */ static int OPL_LockTable (void) { num_lock++; if (num_lock > 1) return 0; /* first time */ cur_chip = NULL; /* allocate total level table (128kb space) */ if (!OPLOpenTable ()) { num_lock--; return -1; } return 0; } static void OPL_UnLockTable (void) { if (num_lock) num_lock--; if (num_lock) return; /* last time */ cur_chip = NULL; OPLCloseTable (); } #if (BUILD_YM3812 || BUILD_YM3526) /*******************************************************************************/ /* YM3812 local section */ /*******************************************************************************/ /* ---------- update one of chip ----------- */ void YM3812UpdateOne (FM_OPL * OPL, INT16 * buffer, int length) { int i; int data; FMSAMPLE *buf = buffer; UINT32 amsCnt = OPL->amsCnt; UINT32 vibCnt = OPL->vibCnt; UINT8 rythm = OPL->rythm & 0x20; OPL_CH *CH, *R_CH; if ((void *) OPL != cur_chip) { cur_chip = (void *) OPL; /* channel pointers */ S_CH = OPL->P_CH; E_CH = &S_CH[9]; /* rythm slot */ SLOT7_1 = &S_CH[7].SLOT[SLOT1]; SLOT7_2 = &S_CH[7].SLOT[SLOT2]; SLOT8_1 = &S_CH[8].SLOT[SLOT1]; SLOT8_2 = &S_CH[8].SLOT[SLOT2]; /* LFO state */ amsIncr = OPL->amsIncr; vibIncr = OPL->vibIncr; ams_table = OPL->ams_table; vib_table = OPL->vib_table; } R_CH = rythm ? &S_CH[6] : E_CH; for (i = 0; i < length; i++) { /* channel A channel B channel C */ /* LFO */ ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; outd[0] = 0; /* FM part */ for (CH = S_CH; CH < R_CH; CH++) OPL_CALC_CH (CH); /* Rythn part */ if (rythm) OPL_CALC_RH (S_CH); /* limit check */ data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT); /* store to sound buffer */ buf[i] = data >> OPL_OUTSB; } OPL->amsCnt = amsCnt; OPL->vibCnt = vibCnt; } #endif /* (BUILD_YM3812 || BUILD_YM3526) */ #if BUILD_Y8950 void Y8950UpdateOne (FM_OPL * OPL, INT16 * buffer, int length) { int i; int data; FMSAMPLE *buf = buffer; UINT32 amsCnt = OPL->amsCnt; UINT32 vibCnt = OPL->vibCnt; UINT8 rythm = OPL->rythm & 0x20; OPL_CH *CH, *R_CH; YM_DELTAT *DELTAT = OPL->deltat; /* setup DELTA-T unit */ YM_DELTAT_DECODE_PRESET (DELTAT); if ((void *) OPL != cur_chip) { cur_chip = (void *) OPL; /* channel pointers */ S_CH = OPL->P_CH; E_CH = &S_CH[9]; /* rythm slot */ SLOT7_1 = &S_CH[7].SLOT[SLOT1]; SLOT7_2 = &S_CH[7].SLOT[SLOT2]; SLOT8_1 = &S_CH[8].SLOT[SLOT1]; SLOT8_2 = &S_CH[8].SLOT[SLOT2]; /* LFO state */ amsIncr = OPL->amsIncr; vibIncr = OPL->vibIncr; ams_table = OPL->ams_table; vib_table = OPL->vib_table; } R_CH = rythm ? &S_CH[6] : E_CH; for (i = 0; i < length; i++) { /* channel A channel B channel C */ /* LFO */ ams = ams_table[(amsCnt += amsIncr) >> AMS_SHIFT]; vib = vib_table[(vibCnt += vibIncr) >> VIB_SHIFT]; outd[0] = 0; /* deltaT ADPCM */ if (DELTAT->flag) YM_DELTAT_ADPCM_CALC (DELTAT); /* FM part */ for (CH = S_CH; CH < R_CH; CH++) OPL_CALC_CH (CH); /* Rythn part */ if (rythm) OPL_CALC_RH (S_CH); /* limit check */ data = Limit (outd[0], OPL_MAXOUT, OPL_MINOUT); /* store to sound buffer */ buf[i] = data >> OPL_OUTSB; } OPL->amsCnt = amsCnt; OPL->vibCnt = vibCnt; /* deltaT START flag */ if (!DELTAT->flag) OPL->status &= 0xfe; } #endif /* ---------- reset one of chip ---------- */ void OPLResetChip (FM_OPL * OPL) { int c, s; int i; /* reset chip */ OPL->mode = 0; /* normal mode */ OPL_STATUS_RESET (OPL, 0x7f); /* reset with register write */ OPLWriteReg (OPL, 0x01, 0); /* wabesel disable */ OPLWriteReg (OPL, 0x02, 0); /* Timer1 */ OPLWriteReg (OPL, 0x03, 0); /* Timer2 */ OPLWriteReg (OPL, 0x04, 0); /* IRQ mask clear */ for (i = 0xff; i >= 0x20; i--) OPLWriteReg (OPL, i, 0); /* reset OPerator paramater */ for (c = 0; c < OPL->max_ch; c++) { OPL_CH *CH = &OPL->P_CH[c]; /* OPL->P_CH[c].PAN = OPN_CENTER; */ for (s = 0; s < 2; s++) { /* wave table */ CH->SLOT[s].wavetable = &SIN_TABLE[0]; /* CH->SLOT[s].evm = ENV_MOD_RR; */ CH->SLOT[s].evc = EG_OFF; CH->SLOT[s].eve = EG_OFF + 1; CH->SLOT[s].evs = 0; } } #if BUILD_Y8950 if (OPL->type & OPL_TYPE_ADPCM) { YM_DELTAT *DELTAT = OPL->deltat; DELTAT->freqbase = OPL->freqbase; DELTAT->output_pointer = outd; DELTAT->portshift = 5; DELTAT->output_range = DELTAT_MIXING_LEVEL << TL_BITS; YM_DELTAT_ADPCM_Reset (DELTAT, 0); } #endif } /* ---------- Create one of vietual YM3812 ---------- */ /* 'rate' is sampling rate and 'bufsiz' is the size of the */ FM_OPL * OPLCreate (int type, int clock, int rate) { char *ptr; FM_OPL *OPL; int state_size; int max_ch = 9; /* normaly 9 channels */ if (OPL_LockTable () == -1) return NULL; /* allocate OPL state space */ state_size = sizeof (FM_OPL); state_size += sizeof (OPL_CH) * max_ch; #if BUILD_Y8950 if (type & OPL_TYPE_ADPCM) state_size += sizeof (YM_DELTAT); #endif /* allocate memory block */ ptr = malloc (state_size); if (ptr == NULL) return NULL; /* clear */ memset (ptr, 0, state_size); OPL = (FM_OPL *) ptr; ptr += sizeof (FM_OPL); OPL->P_CH = (OPL_CH *) ptr; ptr += sizeof (OPL_CH) * max_ch; #if BUILD_Y8950 if (type & OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *) ptr; ptr += sizeof (YM_DELTAT); #endif /* set channel state pointer */ OPL->type = type; OPL->clock = clock; OPL->rate = rate; OPL->max_ch = max_ch; /* init grobal tables */ OPL_initalize (OPL); /* reset chip */ OPLResetChip (OPL); return OPL; } /* ---------- Destroy one of vietual YM3812 ---------- */ void OPLDestroy (FM_OPL * OPL) { OPL_UnLockTable (); free (OPL); } /* ---------- Option handlers ---------- */ void OPLSetTimerHandler (FM_OPL * OPL, OPL_TIMERHANDLER TimerHandler, int channelOffset) { OPL->TimerHandler = TimerHandler; OPL->TimerParam = channelOffset; } void OPLSetIRQHandler (FM_OPL * OPL, OPL_IRQHANDLER IRQHandler, int param) { OPL->IRQHandler = IRQHandler; OPL->IRQParam = param; } void OPLSetUpdateHandler (FM_OPL * OPL, OPL_UPDATEHANDLER UpdateHandler, int param) { OPL->UpdateHandler = UpdateHandler; OPL->UpdateParam = param; } #if BUILD_Y8950 void OPLSetPortHandler (FM_OPL * OPL, OPL_PORTHANDLER_W PortHandler_w, OPL_PORTHANDLER_R PortHandler_r, int param) { OPL->porthandler_w = PortHandler_w; OPL->porthandler_r = PortHandler_r; OPL->port_param = param; } void OPLSetKeyboardHandler (FM_OPL * OPL, OPL_PORTHANDLER_W KeyboardHandler_w, OPL_PORTHANDLER_R KeyboardHandler_r, int param) { OPL->keyboardhandler_w = KeyboardHandler_w; OPL->keyboardhandler_r = KeyboardHandler_r; OPL->keyboard_param = param; } #endif /* ---------- YM3812 I/O interface ---------- */ int OPLWrite (FM_OPL * OPL, int a, int v) { if (!(a & 1)) { /* address port */ OPL->address = v & 0xff; } else { /* data port */ if (OPL->UpdateHandler) OPL->UpdateHandler (OPL->UpdateParam, 0); OPLWriteReg (OPL, OPL->address, v); } return OPL->status >> 7; } unsigned char OPLRead (FM_OPL * OPL, int a) { if (!(a & 1)) { /* status port */ return OPL->status & (OPL->statusmask | 0x80); } /* data port */ switch (OPL->address) { case 0x05: /* KeyBoard IN */ if (OPL->type & OPL_TYPE_KEYBOARD) { if (OPL->keyboardhandler_r) return OPL->keyboardhandler_r (OPL->keyboard_param); else LOG (LOG_WAR, ("OPL:read unmapped KEYBOARD port\n")); } return 0; #if 0 case 0x0f: /* ADPCM-DATA */ return 0; #endif case 0x19: /* I/O DATA */ if (OPL->type & OPL_TYPE_IO) { if (OPL->porthandler_r) return OPL->porthandler_r (OPL->port_param); else LOG (LOG_WAR, ("OPL:read unmapped I/O port\n")); } return 0; case 0x1a: /* PCM-DATA */ return 0; } return 0; } int OPLTimerOver (FM_OPL * OPL, int c) { if (c) { /* Timer B */ OPL_STATUS_SET (OPL, 0x20); } else { /* Timer A */ OPL_STATUS_SET (OPL, 0x40); /* CSM mode key,TL controll */ if (OPL->mode & 0x80) { /* CSM mode total level latch and auto key on */ int ch; if (OPL->UpdateHandler) OPL->UpdateHandler (OPL->UpdateParam, 0); for (ch = 0; ch < 9; ch++) CSMKeyControll (&OPL->P_CH[ch]); } } /* reload timer */ if (OPL->TimerHandler) (OPL->TimerHandler) (OPL->TimerParam + c, (double) OPL->T[c] * OPL->TimerBase); return OPL->status >> 7; }