/*      fix_fft.c - Fixed-point Fast Fourier Transform  */
/*
   fix_fft()       perform FFT or inverse FFT
   window()        applies a Hanning window to the (time) input
   fix_loud()      calculates the loudness of the signal, for
   each freq point. Result is an integer array,
   units are dB (values will be negative).
   iscale()        scale an integer value by (numer/denom).
   fix_mpy()       perform fixed-point multiplication.
   Sinewave[1024]  sinewave normalized to 32767 (= 1.0).
   Loudampl[100]   Amplitudes for lopudnesses from 0 to -99 dB.
   Low_pass        Low-pass filter, cutoff at sample_freq / 4.

   All data are fixed-point short integers, in which
   -32768 to +32768 represent -1.0 to +1.0. Integer arithmetic
   is used for speed, instead of the more natural floating-point.

   For the forward FFT (time -> freq), fixed scaling is
   performed to prevent arithmetic overflow, and to map a 0dB
   sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq
   coefficients; the one in the lower half is reported as 0dB
   by fix_loud(). The return value is always 0.

   For the inverse FFT (freq -> time), fixed scaling cannot be
   done, as two 0dB coefficients would sum to a peak amplitude of
   64K, overflowing the 32k range of the fixed-point integers.
   Thus, the fix_fft() routine performs variable scaling, and
   returns a value which is the number of bits LEFT by which
   the output must be shifted to get the actual amplitude
   (i.e. if fix_fft() returns 3, each value of fr[] and fi[]
   must be multiplied by 8 (2**3) for proper scaling.
   Clearly, this cannot be done within the fixed-point short
   integers. In practice, if the result is to be used as a
   filter, the scale_shift can usually be ignored, as the
   result will be approximately correctly normalized as is.

   TURBO C, any memory model; uses inline assembly for speed
   and for carefully-scaled arithmetic.

   Written by:  Tom Roberts  11/8/89
   Made portable:  Malcolm Slaney 12/15/94 malcolm@interval.com

   Timing on a Macintosh PowerBook 180.... (using Symantec C6.0)
   fix_fft (1024 points)             8 ticks
   fft (1024 points - Using SANE)  112 Ticks
   fft (1024 points - Using FPU)    11

 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#define fixed short

/* FIX_MPY() - fixed-point multiplication macro.
   This macro is a statement, not an expression (uses asm).
   BEWARE: make sure _DX is not clobbered by evaluating (A) or DEST.
   args are all of type fixed.
   Scaling ensures that 32767*32767 = 32767. */

#define FIX_MPY(DEST,A,B)       DEST = ((long)(A) * (long)(B))>>15

#define N_WAVE          1024    /* dimension of Sinewave[] */
#define LOG2_N_WAVE     10      /* log2(N_WAVE) */
#define N_LOUD          100     /* dimension of Loudampl[] */

extern fixed gst_spectrum_Sinewave[N_WAVE];     /* placed at end of this file for clarity */
extern fixed gst_spectrum_Loudampl[N_LOUD];
static int gst_spectrum_db_from_ampl (fixed re, fixed im);
static fixed gst_spectrum_fix_mpy (fixed a, fixed b);

/*
   fix_fft() - perform fast Fourier transform.

   if n>0 FFT is done, if n<0 inverse FFT is done
   fr[n],fi[n] are real,imaginary arrays, INPUT AND RESULT.
   size of data = 2**m
   set inverse to 0=dft, 1=idft
 */
int
gst_spectrum_fix_fft (fixed fr[], fixed fi[], int m, int inverse)
{
  int mr, nn, i, j, l, k, istep, n, scale, shift;
  fixed qr, qi, tr, ti, wr, wi;

  n = 1 << m;

  if (n > N_WAVE)
    return -1;

  mr = 0;
  nn = n - 1;
  scale = 0;

  /* decimation in time - re-order data */
  for (m = 1; m <= nn; ++m) {
    l = n;
    do {
      l >>= 1;
    }
    while (mr + l > nn);
    mr = (mr & (l - 1)) + l;

    if (mr <= m)
      continue;
    tr = fr[m];
    fr[m] = fr[mr];
    fr[mr] = tr;
    ti = fi[m];
    fi[m] = fi[mr];
    fi[mr] = ti;
  }

  l = 1;
  k = LOG2_N_WAVE - 1;
  while (l < n) {
    if (inverse) {
      /* variable scaling, depending upon data */
      shift = 0;
      for (i = 0; i < n; ++i) {
        j = fr[i];
        if (j < 0)
          j = -j;
        m = fi[i];
        if (m < 0)
          m = -m;
        if (j > 16383 || m > 16383) {
          shift = 1;
          break;
        }
      }
      if (shift)
        ++scale;
    } else {
      /* fixed scaling, for proper normalization -
         there will be log2(n) passes, so this
         results in an overall factor of 1/n,
         distributed to maximize arithmetic accuracy. */
      shift = 1;
    }
    /* it may not be obvious, but the shift will be performed
       on each data point exactly once, during this pass. */
    istep = l << 1;
    for (m = 0; m < l; ++m) {
      j = m << k;
      /* 0 <= j < N_WAVE/2 */
      wr = gst_spectrum_Sinewave[j + N_WAVE / 4];
      wi = -gst_spectrum_Sinewave[j];
      if (inverse)
        wi = -wi;
      if (shift) {
        wr >>= 1;
        wi >>= 1;
      }
      for (i = m; i < n; i += istep) {
        j = i + l;
        tr = gst_spectrum_fix_mpy (wr, fr[j]) -
            gst_spectrum_fix_mpy (wi, fi[j]);
        ti = gst_spectrum_fix_mpy (wr, fi[j]) +
            gst_spectrum_fix_mpy (wi, fr[j]);
        qr = fr[i];
        qi = fi[i];
        if (shift) {
          qr >>= 1;
          qi >>= 1;
        }
        fr[j] = qr - tr;
        fi[j] = qi - ti;
        fr[i] = qr + tr;
        fi[i] = qi + ti;
      }
    }
    --k;
    l = istep;
  }

  return scale;
}

/*      window() - apply a Hanning window       */
void
gst_spectrum_window (fixed fr[], int n)
{
  int i, j, k;

  j = N_WAVE / n;
  n >>= 1;
  for (i = 0, k = N_WAVE / 4; i < n; ++i, k += j)
    FIX_MPY (fr[i], fr[i], 16384 - (gst_spectrum_Sinewave[k] >> 1));
  n <<= 1;
  for (k -= j; i < n; ++i, k -= j)
    FIX_MPY (fr[i], fr[i], 16384 - (gst_spectrum_Sinewave[k] >> 1));
}

/*      fix_loud() - compute loudness of freq-vis components.
   n should be ntot/2, where ntot was passed to fix_fft();
   6 dB is added to account for the omitted alias components.
   scale_shift should be the result of fix_fft(), if the time-series
   was obtained from an inverse FFT, 0 otherwise.
   loud[] is the loudness, in dB wrt 32767; will be +10 to -N_LOUD.
 */
void
gst_spectrum_fix_loud (fixed loud[], fixed fr[], fixed fi[], int n,
    int scale_shift)
{
  int i, max;

  max = 0;
  if (scale_shift > 0)
    max = 10;
  scale_shift = (scale_shift + 1) * 6;

  for (i = 0; i < n; ++i) {
    loud[i] = gst_spectrum_db_from_ampl (fr[i], fi[i]) + scale_shift;
    if (loud[i] > max)
      loud[i] = max;
  }
}

/*      db_from_ampl() - find loudness (in dB) from
   the complex amplitude.
 */
int
gst_spectrum_db_from_ampl (fixed re, fixed im)
{
  static long loud2[N_LOUD] = { 0 };
  long v;
  int i;

  if (loud2[0] == 0) {
    loud2[0] =
        (long) gst_spectrum_Loudampl[0] * (long) gst_spectrum_Loudampl[0];
    for (i = 1; i < N_LOUD; ++i) {
      v = (long) gst_spectrum_Loudampl[i] * (long) gst_spectrum_Loudampl[i];
      loud2[i] = v;
      loud2[i - 1] = (loud2[i - 1] + v) / 2;
    }
  }

  v = (long) re *(long) re + (long) im *(long) im;

  for (i = 0; i < N_LOUD; ++i)
    if (loud2[i] <= v)
      break;

  return (-i);
}

/*
   fix_mpy() - fixed-point multiplication
 */
fixed
gst_spectrum_fix_mpy (fixed a, fixed b)
{
  FIX_MPY (a, a, b);
  return a;
}

/*
   iscale() - scale an integer value by (numer/denom)
 */
int
gst_spectrum_iscale (int value, int numer, int denom)
{
  return (long) value *(long) numer / (long) denom;
}

/*
   fix_dot() - dot product of two fixed arrays
 */
fixed
gst_spectrum_fix_dot (fixed * hpa, fixed * pb, int n)
{
  fixed *pa = hpa;              /* FIXME */
  long sum;
  register fixed a, b;

/*      seg = FP_SEG(hpa);
   off = FP_OFF(hpa);
   seg += off>>4;
   off &= 0x000F;
   pa = MK_FP(seg,off);
 */
  sum = 0L;
  while (n--) {
    a = *pa++;
    b = *pb++;
    FIX_MPY (a, a, b);
    sum += a;
  }

  if (sum > 0x7FFF)
    sum = 0x7FFF;
  else if (sum < -0x7FFF)
    sum = -0x7FFF;

  return (fixed) sum;

}

#if N_WAVE != 1024
ERROR:N_WAVE != 1024
#endif
    fixed gst_spectrum_Sinewave[1024] = {
0, 201, 402, 603, 804, 1005, 1206, 1406,
      1607, 1808, 2009, 2209, 2410, 2610, 2811, 3011,
      3211, 3411, 3611, 3811, 4011, 4210, 4409, 4608,
      4807, 5006, 5205, 5403, 5601, 5799, 5997, 6195,
      6392, 6589, 6786, 6982, 7179, 7375, 7571, 7766,
      7961, 8156, 8351, 8545, 8739, 8932, 9126, 9319,
      9511, 9703, 9895, 10087, 10278, 10469, 10659, 10849,
      11038, 11227, 11416, 11604, 11792, 11980, 12166, 12353,
      12539, 12724, 12909, 13094, 13278, 13462, 13645, 13827,
      14009, 14191, 14372, 14552, 14732, 14911, 15090, 15268,
      15446, 15623, 15799, 15975, 16150, 16325, 16499, 16672,
      16845, 17017, 17189, 17360, 17530, 17699, 17868, 18036,
      18204, 18371, 18537, 18702, 18867, 19031, 19194, 19357,
      19519, 19680, 19840, 20000, 20159, 20317, 20474, 20631,
      20787, 20942, 21096, 21249, 21402, 21554, 21705, 21855,
      22004, 22153, 22301, 22448, 22594, 22739, 22883, 23027,
      23169, 23311, 23452, 23592, 23731, 23869, 24006, 24143,
      24278, 24413, 24546, 24679, 24811, 24942, 25072, 25201,
      25329, 25456, 25582, 25707, 25831, 25954, 26077, 26198,
      26318, 26437, 26556, 26673, 26789, 26905, 27019, 27132,
      27244, 27355, 27466, 27575, 27683, 27790, 27896, 28001,
      28105, 28208, 28309, 28410, 28510, 28608, 28706, 28802,
      28897, 28992, 29085, 29177, 29268, 29358, 29446, 29534,
      29621, 29706, 29790, 29873, 29955, 30036, 30116, 30195,
      30272, 30349, 30424, 30498, 30571, 30643, 30713, 30783,
      30851, 30918, 30984, 31049,
      31113, 31175, 31236, 31297,
      31356, 31413, 31470, 31525, 31580, 31633, 31684, 31735,
      31785, 31833, 31880, 31926, 31970, 32014, 32056, 32097,
      32137, 32176, 32213, 32249, 32284, 32318, 32350, 32382,
      32412, 32441, 32468, 32495, 32520, 32544, 32567, 32588,
      32609, 32628, 32646, 32662, 32678, 32692, 32705, 32717,
      32727, 32736, 32744, 32751, 32757, 32761, 32764, 32766,
      32767, 32766, 32764, 32761, 32757, 32751, 32744, 32736,
      32727, 32717, 32705, 32692, 32678, 32662, 32646, 32628,
      32609, 32588, 32567, 32544, 32520, 32495, 32468, 32441,
      32412, 32382, 32350, 32318, 32284, 32249, 32213, 32176,
      32137, 32097, 32056, 32014, 31970, 31926, 31880, 31833,
      31785, 31735, 31684, 31633, 31580, 31525, 31470, 31413,
      31356, 31297, 31236, 31175, 31113, 31049, 30984, 30918,
      30851, 30783, 30713, 30643, 30571, 30498, 30424, 30349,
      30272, 30195, 30116, 30036, 29955, 29873, 29790, 29706,
      29621, 29534, 29446, 29358, 29268, 29177, 29085, 28992,
      28897, 28802, 28706, 28608, 28510, 28410, 28309, 28208,
      28105, 28001, 27896, 27790, 27683, 27575, 27466, 27355,
      27244, 27132, 27019, 26905, 26789, 26673, 26556, 26437,
      26318, 26198, 26077, 25954, 25831, 25707, 25582, 25456,
      25329, 25201, 25072, 24942, 24811, 24679, 24546, 24413,
      24278, 24143, 24006, 23869, 23731, 23592, 23452, 23311,
      23169, 23027, 22883, 22739, 22594, 22448, 22301, 22153,
      22004, 21855, 21705, 21554, 21402, 21249, 21096, 20942,
      20787, 20631, 20474, 20317, 20159, 20000, 19840, 19680,
      19519, 19357, 19194, 19031, 18867, 18702, 18537, 18371,
      18204, 18036, 17868, 17699, 17530, 17360, 17189, 17017,
      16845, 16672, 16499, 16325, 16150, 15975, 15799, 15623,
      15446, 15268, 15090, 14911, 14732, 14552, 14372, 14191,
      14009, 13827, 13645, 13462, 13278, 13094, 12909, 12724,
      12539, 12353, 12166, 11980, 11792, 11604, 11416, 11227,
      11038, 10849, 10659, 10469, 10278, 10087, 9895, 9703,
      9511, 9319, 9126, 8932, 8739, 8545, 8351, 8156,
      7961, 7766, 7571, 7375, 7179, 6982, 6786, 6589,
      6392, 6195, 5997, 5799, 5601, 5403, 5205, 5006,
      4807, 4608, 4409, 4210, 4011, 3811, 3611, 3411,
      3211, 3011, 2811, 2610, 2410, 2209, 2009, 1808,
      1607, 1406, 1206, 1005, 804, 603, 402, 201,
      0, -201, -402, -603, -804, -1005, -1206, -1406,
      -1607, -1808, -2009, -2209, -2410, -2610, -2811, -3011,
      -3211, -3411, -3611, -3811, -4011, -4210, -4409, -4608,
      -4807, -5006, -5205, -5403, -5601, -5799, -5997, -6195,
      -6392, -6589, -6786, -6982, -7179, -7375, -7571, -7766,
      -7961, -8156, -8351, -8545, -8739, -8932, -9126, -9319,
      -9511, -9703, -9895, -10087, -10278, -10469, -10659, -10849,
      -11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
      -12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
      -14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
      -15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
      -16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
      -18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
      -19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
      -20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
      -22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
      -23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
      -24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
      -25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
      -26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
      -27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
      -28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
      -28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
      -29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
      -30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
      -30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
      -31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
      -31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
      -32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
      -32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
      -32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
      -32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
      -32767, -32766, -32764, -32761, -32757, -32751, -32744, -32736,
      -32727, -32717, -32705, -32692, -32678, -32662, -32646, -32628,
      -32609, -32588, -32567, -32544, -32520, -32495, -32468, -32441,
      -32412, -32382, -32350, -32318, -32284, -32249, -32213, -32176,
      -32137, -32097, -32056, -32014, -31970, -31926, -31880, -31833,
      -31785, -31735, -31684, -31633, -31580, -31525, -31470, -31413,
      -31356, -31297, -31236, -31175, -31113, -31049, -30984, -30918,
      -30851, -30783, -30713, -30643, -30571, -30498, -30424, -30349,
      -30272, -30195, -30116, -30036, -29955, -29873, -29790, -29706,
      -29621, -29534, -29446, -29358, -29268, -29177, -29085, -28992,
      -28897, -28802, -28706, -28608, -28510, -28410, -28309, -28208,
      -28105, -28001, -27896, -27790, -27683, -27575, -27466, -27355,
      -27244, -27132, -27019, -26905, -26789, -26673, -26556, -26437,
      -26318, -26198, -26077, -25954, -25831, -25707, -25582, -25456,
      -25329, -25201, -25072, -24942, -24811, -24679, -24546, -24413,
      -24278, -24143, -24006, -23869, -23731, -23592, -23452, -23311,
      -23169, -23027, -22883, -22739, -22594, -22448, -22301, -22153,
      -22004, -21855, -21705, -21554, -21402, -21249, -21096, -20942,
      -20787, -20631, -20474, -20317, -20159, -20000, -19840, -19680,
      -19519, -19357, -19194, -19031, -18867, -18702, -18537, -18371,
      -18204, -18036, -17868, -17699, -17530, -17360, -17189, -17017,
      -16845, -16672, -16499, -16325, -16150, -15975, -15799, -15623,
      -15446, -15268, -15090, -14911, -14732, -14552, -14372, -14191,
      -14009, -13827, -13645, -13462, -13278, -13094, -12909, -12724,
      -12539, -12353, -12166, -11980, -11792, -11604, -11416, -11227,
      -11038, -10849, -10659, -10469, -10278, -10087, -9895, -9703,
      -9511, -9319, -9126, -8932, -8739, -8545, -8351, -8156,
      -7961, -7766, -7571, -7375, -7179, -6982, -6786, -6589,
      -6392, -6195, -5997, -5799, -5601, -5403, -5205, -5006,
      -4807, -4608, -4409, -4210, -4011, -3811, -3611, -3411,
      -3211, -3011, -2811, -2610, -2410, -2209, -2009, -1808,
      -1607, -1406, -1206, -1005, -804, -603, -402, -201,};

#if N_LOUD != 100
ERROR:N_LOUD != 100
#endif
    fixed gst_spectrum_Loudampl[100] = {
32767, 29203, 26027, 23197, 20674, 18426, 16422, 14636,
      13044, 11626, 10361, 9234, 8230, 7335, 6537, 5826,
      5193, 4628, 4125, 3676, 3276, 2920, 2602, 2319,
      2067, 1842, 1642, 1463, 1304, 1162, 1036, 923,
      823, 733, 653, 582, 519, 462, 412, 367,
      327, 292, 260, 231, 206, 184, 164, 146,
      130, 116, 103, 92, 82, 73, 65, 58,
      51, 46, 41, 36, 32, 29, 26, 23,
      20, 18, 16, 14, 13, 11, 10, 9,
      8, 7, 6, 5, 5, 4, 4, 3,
      3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,};