/* This file is part of Ingen. Copyright 2007-2016 David Robillard Ingen is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. Ingen is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for details. You should have received a copy of the GNU Affero General Public License along with Ingen. If not, see . */ #include "Buffer.hpp" #include "BufferFactory.hpp" #include "Engine.hpp" #include "RunContext.hpp" #include "ingen_config.h" #include "ingen/Atom.hpp" #include "ingen/Log.hpp" #include "ingen/URIs.hpp" #include "lv2/atom/atom.h" #include "lv2/atom/util.h" #include "lv2/urid/urid.h" #include #include #include #include #include #ifdef __SSE__ # include #endif namespace ingen::server { Buffer::Buffer(BufferFactory& bufs, LV2_URID type, LV2_URID value_type, uint32_t capacity, bool external, void*) : _factory(bufs) , _buf(external ? nullptr : aligned_alloc(capacity)) , _type(type) , _value_type(value_type) , _capacity(capacity) , _external(external) { if (!external && !_buf) { bufs.engine().log().rt_error("Failed to allocate buffer\n"); throw std::bad_alloc(); } if (type != bufs.uris().atom_Sound) { /* Audio buffers are not atoms, the buffer is the start of a float array which is already silent since the buffer is zeroed. All other buffers are atoms. */ if (_buf) { auto* atom = get(); atom->size = capacity - sizeof(LV2_Atom); atom->type = type; clear(); } if (value_type && value_type != type) { /* Buffer with a different value type. These buffers (probably sequences) have a "value" that persists independently of the buffer contents. This is used to represent things like a Sequence of Float, which acts like an individual float (has a value), but the buffer itself only transmits changes and does not necessarily contain the current value. */ _value_buffer = bufs.get_buffer(value_type, 0, 0); } } } Buffer::~Buffer() { if (!_external) { free(_buf); } } void Buffer::recycle() { _factory.recycle(this); } void Buffer::set_type(GetFn get_func, LV2_URID type, LV2_URID value_type) { _type = type; _value_type = value_type; if (type == _factory.uris().atom_Sequence && value_type) { _value_buffer = (_factory.*get_func)(value_type, 0, 0); } } void Buffer::clear() { if (is_audio() && _buf) { memset(_buf, 0, _capacity); } else if (is_control()) { get()->body = 0; } else if (is_sequence()) { auto* seq = get(); seq->atom.type = _factory.uris().atom_Sequence; seq->atom.size = sizeof(LV2_Atom_Sequence_Body); seq->body.unit = 0; seq->body.pad = 0; _latest_event = 0; } } void Buffer::render_sequence(const RunContext& ctx, const Buffer* src, bool add) { const LV2_URID atom_Float = _factory.uris().atom_Float; const auto* seq = src->get(); const auto* init = reinterpret_cast(src->value()); float value = init ? init->body : 0.0f; SampleCount offset = ctx.offset(); LV2_ATOM_SEQUENCE_FOREACH (seq, ev) { if (ev->time.frames >= offset && ev->body.type == atom_Float) { write_block(value, offset, ev->time.frames, add); value = reinterpret_cast(&ev->body)->body; offset = ev->time.frames; } } write_block(value, offset, ctx.offset() + ctx.nframes(), add); } void Buffer::copy(const RunContext& ctx, const Buffer* src) { if (!_buf) { return; } if (_type == src->type()) { const uint32_t src_size = src->size(); if (src_size <= _capacity) { memcpy(_buf, src->_buf, src_size); } else { clear(); } } else if (src->is_audio() && is_control()) { samples()[0] = src->samples()[0]; } else if (src->is_control() && is_audio()) { set_block(src->samples()[0], 0, ctx.nframes()); } else if (src->is_sequence() && is_audio() && src->value_type() == _factory.uris().atom_Float) { render_sequence(ctx, src, false); } else { clear(); } } void Buffer::resize(uint32_t capacity) { if (!_external) { _buf = realloc(_buf, capacity); _capacity = capacity; clear(); } else { _factory.engine().log().error("Attempt to resize external buffer\n"); } } void* Buffer::port_data(PortType port_type, SampleCount offset) { switch (port_type.id()) { case PortType::ID::CONTROL: return &_value_buffer->get()->body; case PortType::ID::CV: case PortType::ID::AUDIO: if (_type == _factory.uris().atom_Float) { return &get()->body; } else if (_type == _factory.uris().atom_Sound) { return static_cast(_buf) + offset; } break; case PortType::ID::ATOM: if (_type != _factory.uris().atom_Sound) { return _buf; } break; default: break; } return nullptr; } const void* Buffer::port_data(PortType port_type, SampleCount offset) const { return const_cast(this)->port_data(port_type, offset); } #ifdef __SSE__ /** Vector fabsf */ static inline __m128 mm_abs_ps(__m128 x) { const __m128 sign_mask = _mm_set1_ps(-0.0f); // -0.0f = 1 << 31 return _mm_andnot_ps(sign_mask, x); } #endif float Buffer::peak(const RunContext& ctx) const { #ifdef __SSE__ const auto* const vbuf = reinterpret_cast(samples()); __m128 vpeak = mm_abs_ps(vbuf[0]); const SampleCount nblocks = ctx.nframes() / 4; // First, find the vector absolute max of the buffer for (SampleCount i = 1; i < nblocks; ++i) { vpeak = _mm_max_ps(vpeak, mm_abs_ps(vbuf[i])); } // Now we need the single max of vpeak // vpeak = ABCD // tmp = CDAB auto tmp = _mm_shuffle_ps(vpeak, vpeak, _MM_SHUFFLE(2, 3, 0, 1)); // vpeak = MAX(A,C) MAX(B,D) MAX(C,A) MAX(D,B) vpeak = _mm_max_ps(vpeak, tmp); // tmp = BADC of the new vpeak // tmp = MAX(B,D) MAX(A,C) MAX(D,B) MAX(C,A) tmp = _mm_shuffle_ps(vpeak, vpeak, _MM_SHUFFLE(1, 0, 3, 2)); // vpeak = MAX(MAX(A,C), MAX(B,D)), ... vpeak = _mm_max_ps(vpeak, tmp); // peak = vpeak[0] float peak = 0.0f; _mm_store_ss(&peak, vpeak); return peak; #else const Sample* const buf = samples(); float peak = 0.0f; for (SampleCount i = 0; i < ctx.nframes(); ++i) { peak = fmaxf(peak, fabsf(buf[i])); } return peak; #endif } void Buffer::prepare_write(RunContext&) { if (_type == _factory.uris().atom_Sequence) { auto* atom = get(); atom->type = static_cast(_factory.uris().atom_Sequence); atom->size = sizeof(LV2_Atom_Sequence_Body); _latest_event = 0; } } void Buffer::prepare_output_write(RunContext&) { if (_type == _factory.uris().atom_Sequence) { auto* atom = get(); atom->type = static_cast(_factory.uris().atom_Chunk); atom->size = _capacity - sizeof(LV2_Atom); _latest_event = 0; } } bool Buffer::append_event(int64_t frames, uint32_t size, uint32_t type, const uint8_t* data) { assert(frames >= _latest_event); auto* atom = get(); if (atom->type == _factory.uris().atom_Chunk) { clear(); // Chunk initialized with prepare_output_write(), clear } if (sizeof(LV2_Atom) + atom->size + lv2_atom_pad_size(size) > _capacity) { return false; } auto* seq = reinterpret_cast(atom); auto* ev = reinterpret_cast( reinterpret_cast(seq) + lv2_atom_total_size(&seq->atom)); ev->time.frames = frames; ev->body.size = size; ev->body.type = type; memcpy(ev + 1, data, size); atom->size += sizeof(LV2_Atom_Event) + lv2_atom_pad_size(size); _latest_event = frames; return true; } bool Buffer::append_event(int64_t frames, const LV2_Atom* body) { return append_event(frames, body->size, body->type, reinterpret_cast(body + 1)); } bool Buffer::append_event_buffer(const Buffer* buf) { auto* seq = reinterpret_cast(get()); const auto* bseq = reinterpret_cast(buf->get()); if (seq->atom.type == _factory.uris().atom_Chunk) { clear(); // Chunk initialized with prepare_output_write(), clear } const uint32_t total_size = lv2_atom_total_size(&seq->atom); uint8_t* const end = reinterpret_cast(seq) + total_size; const uint32_t n_bytes = bseq->atom.size - sizeof(bseq->body); if (sizeof(LV2_Atom) + total_size + n_bytes >= _capacity) { return false; // Not enough space } memcpy(end, bseq + 1, n_bytes); seq->atom.size += n_bytes; _latest_event = std::max(_latest_event, buf->_latest_event); return true; } SampleCount Buffer::next_value_offset(SampleCount offset, SampleCount end) const { if (_type == _factory.uris().atom_Sequence && _value_type) { const auto* seq = get(); LV2_ATOM_SEQUENCE_FOREACH (seq, ev) { if (ev->time.frames > offset && ev->time.frames < end && ev->body.type == _value_type) { return ev->time.frames; } } } /* For CV buffers, it's possible to scan for a value change here, which for stepped CV would do the right thing, but in the worst case (e.g. with sine waves), when connected to a control port would split the cycle for every frame which isn't feasible. Instead, just return end, so the cycle will not be split. A plugin that takes CV and emits discrete change events, possibly with a maximum rate or fuzz factor, would allow the user to choose which behaviour, at the cost of some overhead. */ return end; } const LV2_Atom* Buffer::value() const { return _value_buffer ? _value_buffer->get() : nullptr; } void Buffer::set_value(const Atom& value) { if (!value.is_valid() || !_value_buffer) { return; } const uint32_t total_size = sizeof(LV2_Atom) + value.size(); if (total_size > _value_buffer->capacity()) { _value_buffer = _factory.claim_buffer(value.type(), 0, total_size); } memcpy(_value_buffer->get(), value.atom(), total_size); } void Buffer::update_value_buffer(SampleCount offset) { if (!_value_buffer || !_value_type) { return; } auto* seq = get(); LV2_Atom_Event* latest = nullptr; LV2_ATOM_SEQUENCE_FOREACH (seq, ev) { if (ev->time.frames > offset) { break; } if (ev->body.type == _value_type) { latest = ev; } } if (latest) { memcpy(_value_buffer->get(), &latest->body, lv2_atom_total_size(&latest->body)); } } void* Buffer::aligned_alloc(size_t size) { #if USE_POSIX_MEMALIGN void* buf = nullptr; if (!posix_memalign(&buf, 16, size)) { memset(buf, 0, size); return buf; } #else return (LV2_buf*)calloc(1, size); #endif return nullptr; } void intrusive_ptr_add_ref(Buffer* b) { b->ref(); } void intrusive_ptr_release(Buffer* b) { b->deref(); } } // namespace ingen::server