/*
This file is part of Ingen.
Copyright 2007-2017 David Robillard
Ingen is free software: you can redistribute it and/or modify it under the
terms of the GNU Affero General Public License as published by the Free
Software Foundation, either version 3 of the License, or any later version.
Ingen is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Affero General Public License for details.
You should have received a copy of the GNU Affero General Public License
along with Ingen. If not, see .
*/
#ifndef INGEN_ENGINE_ENGINE_HPP
#define INGEN_ENGINE_ENGINE_HPP
#include "Event.hpp"
#include "Load.hpp"
#include "ingen/Clock.hpp"
#include "ingen/EngineBase.hpp"
#include "ingen/Properties.hpp"
#include "ingen/ingen.h"
#include "ingen/types.hpp"
#include
#include
#include
#include
#include
#include
#include
namespace Raul {
class Maid;
class RingBuffer;
}
namespace ingen {
class AtomReader;
class Interface;
class Log;
class Store;
class World;
namespace server {
class BlockFactory;
class Broadcaster;
class BufferFactory;
class ControlBindings;
class Driver;
class EventWriter;
class GraphImpl;
class LV2Options;
class PostProcessor;
class PreProcessor;
class RunContext;
class SocketListener;
class Task;
class UndoStack;
class Worker;
/**
The engine which executes the process graph.
This is a simple class that provides pointers to the various components
that make up the engine implementation. In processes with a local engine,
it can be accessed via the ingen::World.
@ingroup engine
*/
class INGEN_API Engine : public EngineBase
{
public:
explicit Engine(ingen::World& world);
virtual ~Engine();
Engine(const Engine&) = delete;
Engine& operator=(const Engine&) = delete;
// EngineBase methods
void init(double sample_rate, uint32_t block_length, size_t seq_size) override;
bool supports_dynamic_ports() const override;
bool activate() override;
void deactivate() override;
bool pending_events() const override;
unsigned run(uint32_t sample_count) override;
void quit() override;
bool main_iteration() override;
void register_client(SPtr client) override;
bool unregister_client(SPtr client) override;
void listen() override;
/** Return a random [0..1] float with uniform distribution */
float frand() { return _uniform_dist(_rand_engine); }
void set_driver(SPtr driver);
/** Return the frame time to execute an event that arrived now.
*
* This aims to return a time one cycle from "now", so that events ideally
* have 1 cycle of latency with no jitter.
*/
SampleCount event_time();
/** Return the time this cycle began processing in microseconds.
*
* This value is comparable to the value returned by current_time().
*/
inline uint64_t cycle_start_time(const RunContext& context) const {
return _cycle_start_time;
}
/** Return the current time in microseconds. */
uint64_t current_time() const;
/** Reset the load statistics (when the expected DSP load changes). */
void reset_load();
/** Enqueue an event to be processed (non-realtime threads only). */
void enqueue_event(Event* ev, Event::Mode mode=Event::Mode::NORMAL);
/** Process events (process thread only). */
unsigned process_events();
/** Process all events (no RT limits). */
unsigned process_all_events();
ingen::World& world() const { return _world; }
Log& log() const;
const SPtr& interface() const { return _interface; }
const SPtr& event_writer() const { return _event_writer; }
const UPtr& atom_interface() const { return _atom_interface; }
const UPtr& block_factory() const { return _block_factory; }
const UPtr& broadcaster() const { return _broadcaster; }
const UPtr& buffer_factory() const { return _buffer_factory; }
const UPtr& control_bindings() const { return _control_bindings; }
const SPtr& driver() const { return _driver; }
const UPtr& post_processor() const { return _post_processor; }
const UPtr& maid() const { return _maid; }
const UPtr& undo_stack() const { return _undo_stack; }
const UPtr& redo_stack() const { return _redo_stack; }
const UPtr& worker() const { return _worker; }
const UPtr& sync_worker() const { return _sync_worker; }
GraphImpl* root_graph() const { return _root_graph; }
void set_root_graph(GraphImpl* graph);
RunContext& run_context() { return *_run_contexts[0]; }
void flush_events(const std::chrono::milliseconds& sleep_ms) override;
void advance(SampleCount nframes) override;
void locate(FrameTime s, SampleCount nframes) override;
void emit_notifications(FrameTime end);
bool pending_notifications();
bool wait_for_tasks();
void signal_tasks_available();
Task* steal_task(unsigned start_thread);
SPtr store() const;
SampleRate sample_rate() const;
SampleCount block_length() const;
size_t sequence_size() const;
size_t event_queue_size() const;
size_t n_threads() const { return _run_contexts.size(); }
bool atomic_bundles() const { return _atomic_bundles; }
bool activated() const { return _activated; }
Properties load_properties() const;
private:
ingen::World& _world;
SPtr _options;
UPtr _buffer_factory;
UPtr _maid;
SPtr _driver;
UPtr _worker;
UPtr _sync_worker;
UPtr _broadcaster;
UPtr _control_bindings;
UPtr _block_factory;
UPtr _undo_stack;
UPtr _redo_stack;
UPtr _post_processor;
UPtr _pre_processor;
UPtr _listener;
SPtr _event_writer;
SPtr _interface;
UPtr _atom_interface;
GraphImpl* _root_graph;
std::vector> _notifications;
std::vector> _run_contexts;
uint64_t _cycle_start_time;
Load _run_load;
Clock _clock;
std::mt19937 _rand_engine;
std::uniform_real_distribution _uniform_dist;
std::condition_variable _tasks_available;
std::mutex _tasks_mutex;
bool _quit_flag;
bool _reset_load_flag;
bool _atomic_bundles;
bool _activated;
};
} // namespace server
} // namespace ingen
#endif // INGEN_ENGINE_ENGINE_HPP