summaryrefslogtreecommitdiffstats
path: root/bindings/numpy.i
diff options
context:
space:
mode:
authorDavid Robillard <d@drobilla.net>2013-12-19 17:50:01 +0000
committerDavid Robillard <d@drobilla.net>2013-12-19 17:50:01 +0000
commit05576eb9976357bc3870095c0d7e284c655ddb52 (patch)
treee096a9c604deb205f82d613e6065ee2d52ca6436 /bindings/numpy.i
parent9a6e476aa52737c328139396098a074804fc6781 (diff)
downloadlilv-05576eb9976357bc3870095c0d7e284c655ddb52.tar.gz
lilv-05576eb9976357bc3870095c0d7e284c655ddb52.tar.bz2
lilv-05576eb9976357bc3870095c0d7e284c655ddb52.zip
Add support for running plugins from Python by Kaspar Emanuel (fix #939 and #940).
git-svn-id: http://svn.drobilla.net/lad/trunk/lilv@5189 a436a847-0d15-0410-975c-d299462d15a1
Diffstat (limited to 'bindings/numpy.i')
-rw-r--r--bindings/numpy.i1744
1 files changed, 1744 insertions, 0 deletions
diff --git a/bindings/numpy.i b/bindings/numpy.i
new file mode 100644
index 0000000..6f71f58
--- /dev/null
+++ b/bindings/numpy.i
@@ -0,0 +1,1744 @@
+/* -*- C -*- (not really, but good for syntax highlighting) */
+#ifdef SWIGPYTHON
+
+%{
+#ifndef SWIG_FILE_WITH_INIT
+# define NO_IMPORT_ARRAY
+#endif
+#include "stdio.h"
+#include <numpy/arrayobject.h>
+%}
+
+/**********************************************************************/
+
+%fragment("NumPy_Backward_Compatibility", "header")
+{
+/* Support older NumPy data type names
+*/
+%#if NDARRAY_VERSION < 0x01000000
+%#define NPY_BOOL PyArray_BOOL
+%#define NPY_BYTE PyArray_BYTE
+%#define NPY_UBYTE PyArray_UBYTE
+%#define NPY_SHORT PyArray_SHORT
+%#define NPY_USHORT PyArray_USHORT
+%#define NPY_INT PyArray_INT
+%#define NPY_UINT PyArray_UINT
+%#define NPY_LONG PyArray_LONG
+%#define NPY_ULONG PyArray_ULONG
+%#define NPY_LONGLONG PyArray_LONGLONG
+%#define NPY_ULONGLONG PyArray_ULONGLONG
+%#define NPY_FLOAT PyArray_FLOAT
+%#define NPY_DOUBLE PyArray_DOUBLE
+%#define NPY_LONGDOUBLE PyArray_LONGDOUBLE
+%#define NPY_CFLOAT PyArray_CFLOAT
+%#define NPY_CDOUBLE PyArray_CDOUBLE
+%#define NPY_CLONGDOUBLE PyArray_CLONGDOUBLE
+%#define NPY_OBJECT PyArray_OBJECT
+%#define NPY_STRING PyArray_STRING
+%#define NPY_UNICODE PyArray_UNICODE
+%#define NPY_VOID PyArray_VOID
+%#define NPY_NTYPES PyArray_NTYPES
+%#define NPY_NOTYPE PyArray_NOTYPE
+%#define NPY_CHAR PyArray_CHAR
+%#define NPY_USERDEF PyArray_USERDEF
+%#define npy_intp intp
+
+%#define NPY_MAX_BYTE MAX_BYTE
+%#define NPY_MIN_BYTE MIN_BYTE
+%#define NPY_MAX_UBYTE MAX_UBYTE
+%#define NPY_MAX_SHORT MAX_SHORT
+%#define NPY_MIN_SHORT MIN_SHORT
+%#define NPY_MAX_USHORT MAX_USHORT
+%#define NPY_MAX_INT MAX_INT
+%#define NPY_MIN_INT MIN_INT
+%#define NPY_MAX_UINT MAX_UINT
+%#define NPY_MAX_LONG MAX_LONG
+%#define NPY_MIN_LONG MIN_LONG
+%#define NPY_MAX_ULONG MAX_ULONG
+%#define NPY_MAX_LONGLONG MAX_LONGLONG
+%#define NPY_MIN_LONGLONG MIN_LONGLONG
+%#define NPY_MAX_ULONGLONG MAX_ULONGLONG
+%#define NPY_MAX_INTP MAX_INTP
+%#define NPY_MIN_INTP MIN_INTP
+
+%#define NPY_FARRAY FARRAY
+%#define NPY_F_CONTIGUOUS F_CONTIGUOUS
+%#endif
+}
+
+/**********************************************************************/
+
+/* The following code originally appeared in
+ * enthought/kiva/agg/src/numeric.i written by Eric Jones. It was
+ * translated from C++ to C by John Hunter. Bill Spotz has modified
+ * it to fix some minor bugs, upgrade from Numeric to numpy (all
+ * versions), add some comments and functionality, and convert from
+ * direct code insertion to SWIG fragments.
+ */
+
+%fragment("NumPy_Macros", "header")
+{
+/* Macros to extract array attributes.
+ */
+%#define is_array(a) ((a) && PyArray_Check((PyArrayObject *)a))
+%#define array_type(a) (int)(PyArray_TYPE(a))
+%#define array_numdims(a) (((PyArrayObject *)a)->nd)
+%#define array_dimensions(a) (((PyArrayObject *)a)->dimensions)
+%#define array_size(a,i) (((PyArrayObject *)a)->dimensions[i])
+%#define array_data(a) (((PyArrayObject *)a)->data)
+%#define array_is_contiguous(a) (PyArray_ISCONTIGUOUS(a))
+%#define array_is_native(a) (PyArray_ISNOTSWAPPED(a))
+%#define array_is_fortran(a) (PyArray_ISFORTRAN(a))
+}
+
+/**********************************************************************/
+
+%fragment("NumPy_Utilities", "header")
+{
+ /* Given a PyObject, return a string describing its type.
+ */
+ const char* pytype_string(PyObject* py_obj) {
+ if (py_obj == NULL ) return "C NULL value";
+ if (py_obj == Py_None ) return "Python None" ;
+ if (PyCallable_Check(py_obj)) return "callable" ;
+ if (PyString_Check( py_obj)) return "string" ;
+ if (PyInt_Check( py_obj)) return "int" ;
+ if (PyFloat_Check( py_obj)) return "float" ;
+ if (PyDict_Check( py_obj)) return "dict" ;
+ if (PyList_Check( py_obj)) return "list" ;
+ if (PyTuple_Check( py_obj)) return "tuple" ;
+ if (PyFile_Check( py_obj)) return "file" ;
+ if (PyModule_Check( py_obj)) return "module" ;
+ if (PyInstance_Check(py_obj)) return "instance" ;
+
+ return "unkown type";
+ }
+
+ /* Given a NumPy typecode, return a string describing the type.
+ */
+ const char* typecode_string(int typecode) {
+ static const char* type_names[25] = {"bool", "byte", "unsigned byte",
+ "short", "unsigned short", "int",
+ "unsigned int", "long", "unsigned long",
+ "long long", "unsigned long long",
+ "float", "double", "long double",
+ "complex float", "complex double",
+ "complex long double", "object",
+ "string", "unicode", "void", "ntypes",
+ "notype", "char", "unknown"};
+ return typecode < 24 ? type_names[typecode] : type_names[24];
+ }
+
+ /* Make sure input has correct numpy type. Allow character and byte
+ * to match. Also allow int and long to match. This is deprecated.
+ * You should use PyArray_EquivTypenums() instead.
+ */
+ int type_match(int actual_type, int desired_type) {
+ return PyArray_EquivTypenums(actual_type, desired_type);
+ }
+}
+
+/**********************************************************************/
+
+%fragment("NumPy_Object_to_Array", "header",
+ fragment="NumPy_Backward_Compatibility",
+ fragment="NumPy_Macros",
+ fragment="NumPy_Utilities")
+{
+ /* Given a PyObject pointer, cast it to a PyArrayObject pointer if
+ * legal. If not, set the python error string appropriately and
+ * return NULL.
+ */
+ PyArrayObject* obj_to_array_no_conversion(PyObject* input, int typecode)
+ {
+ PyArrayObject* ary = NULL;
+ if (is_array(input) && (typecode == NPY_NOTYPE ||
+ PyArray_EquivTypenums(array_type(input), typecode)))
+ {
+ ary = (PyArrayObject*) input;
+ }
+ else if is_array(input)
+ {
+ const char* desired_type = typecode_string(typecode);
+ const char* actual_type = typecode_string(array_type(input));
+ PyErr_Format(PyExc_TypeError,
+ "Array of type '%s' required. Array of type '%s' given",
+ desired_type, actual_type);
+ ary = NULL;
+ }
+ else
+ {
+ const char * desired_type = typecode_string(typecode);
+ const char * actual_type = pytype_string(input);
+ PyErr_Format(PyExc_TypeError,
+ "Array of type '%s' required. A '%s' was given",
+ desired_type, actual_type);
+ ary = NULL;
+ }
+ return ary;
+ }
+
+ /* Convert the given PyObject to a NumPy array with the given
+ * typecode. On success, return a valid PyArrayObject* with the
+ * correct type. On failure, the python error string will be set and
+ * the routine returns NULL.
+ */
+ PyArrayObject* obj_to_array_allow_conversion(PyObject* input, int typecode,
+ int* is_new_object)
+ {
+ PyArrayObject* ary = NULL;
+ PyObject* py_obj;
+ if (is_array(input) && (typecode == NPY_NOTYPE ||
+ PyArray_EquivTypenums(array_type(input),typecode)))
+ {
+ ary = (PyArrayObject*) input;
+ *is_new_object = 0;
+ }
+ else
+ {
+ py_obj = PyArray_FROMANY(input, typecode, 0, 0, NPY_DEFAULT);
+ /* If NULL, PyArray_FromObject will have set python error value.*/
+ ary = (PyArrayObject*) py_obj;
+ *is_new_object = 1;
+ }
+ return ary;
+ }
+
+ /* Given a PyArrayObject, check to see if it is contiguous. If so,
+ * return the input pointer and flag it as not a new object. If it is
+ * not contiguous, create a new PyArrayObject using the original data,
+ * flag it as a new object and return the pointer.
+ */
+ PyArrayObject* make_contiguous(PyArrayObject* ary, int* is_new_object,
+ int min_dims, int max_dims)
+ {
+ PyArrayObject* result;
+ if (array_is_contiguous(ary))
+ {
+ result = ary;
+ *is_new_object = 0;
+ }
+ else
+ {
+ result = (PyArrayObject*) PyArray_ContiguousFromObject((PyObject*)ary,
+ array_type(ary),
+ min_dims,
+ max_dims);
+ *is_new_object = 1;
+ }
+ return result;
+ }
+
+ /* Given a PyArrayObject, check to see if it is Fortran-contiguous.
+ * If so, return the input pointer, but do not flag it as not a new
+ * object. If it is not Fortran-contiguous, create a new
+ * PyArrayObject using the original data, flag it as a new object
+ * and return the pointer.
+ */
+ PyArrayObject* make_fortran(PyArrayObject* ary, int* is_new_object,
+ int min_dims, int max_dims)
+ {
+ PyArrayObject* result;
+ if (array_is_fortran(ary))
+ {
+ result = ary;
+ *is_new_object = 0;
+ }
+ else
+ {
+ Py_INCREF(ary->descr);
+ result = (PyArrayObject*) PyArray_FromArray(ary, ary->descr, NPY_FORTRAN);
+ *is_new_object = 1;
+ }
+ return result;
+ }
+
+ /* Convert a given PyObject to a contiguous PyArrayObject of the
+ * specified type. If the input object is not a contiguous
+ * PyArrayObject, a new one will be created and the new object flag
+ * will be set.
+ */
+ PyArrayObject* obj_to_array_contiguous_allow_conversion(PyObject* input,
+ int typecode,
+ int* is_new_object)
+ {
+ int is_new1 = 0;
+ int is_new2 = 0;
+ PyArrayObject* ary2;
+ PyArrayObject* ary1 = obj_to_array_allow_conversion(input, typecode,
+ &is_new1);
+ if (ary1)
+ {
+ ary2 = make_contiguous(ary1, &is_new2, 0, 0);
+ if ( is_new1 && is_new2)
+ {
+ Py_DECREF(ary1);
+ }
+ ary1 = ary2;
+ }
+ *is_new_object = is_new1 || is_new2;
+ return ary1;
+ }
+
+ /* Convert a given PyObject to a Fortran-ordered PyArrayObject of the
+ * specified type. If the input object is not a Fortran-ordered
+ * PyArrayObject, a new one will be created and the new object flag
+ * will be set.
+ */
+ PyArrayObject* obj_to_array_fortran_allow_conversion(PyObject* input,
+ int typecode,
+ int* is_new_object)
+ {
+ int is_new1 = 0;
+ int is_new2 = 0;
+ PyArrayObject* ary2;
+ PyArrayObject* ary1 = obj_to_array_allow_conversion(input, typecode,
+ &is_new1);
+ if (ary1)
+ {
+ ary2 = make_fortran(ary1, &is_new2, 0, 0);
+ if (is_new1 && is_new2)
+ {
+ Py_DECREF(ary1);
+ }
+ ary1 = ary2;
+ }
+ *is_new_object = is_new1 || is_new2;
+ return ary1;
+ }
+
+ /* The following code was added by Ilmar M. Wilbers for forcing a copy of the
+ * object even when it is a NumPy array. This is meant for use with the
+ * IN_ARRAY typemaps, and allows the user to perform changes on an array
+ * without these chenges being reflected in the calling code.
+ */
+
+ /* Convert the given PyObject to a NumPy array with the given
+ * typecode as a copy. On success, return a valid PyArrayObject* with the
+ * correct type. On failure, the python error string will be set and
+ * the routine returns NULL.
+ */
+ PyArrayObject* obj_to_array_force_conversion(PyObject* input, int typecode,
+ int* is_new_object)
+ {
+ PyArrayObject* ary = NULL;
+ PyObject* py_obj;
+ if (is_array(input) && (typecode == NPY_NOTYPE ||
+ PyArray_EquivTypenums(array_type(input),typecode)))
+ {
+ py_obj = PyArray_Copy((PyArrayObject*) input);
+ ary = (PyArrayObject*) py_obj;
+ *is_new_object = 1;
+ }
+ else
+ {
+ py_obj = PyArray_FROMANY(input, typecode, 0, 0, NPY_DEFAULT);
+ /* If NULL, PyArray_FromObject will have set python error value.*/
+ ary = (PyArrayObject*) py_obj;
+ *is_new_object = 1;
+ }
+ return ary;
+ }
+
+ /* Convert a given PyObject to a contiguous PyArrayObject of the
+ * specified type. If the input object is not a contiguous
+ * PyArrayObject, a new one will be created and the new object flag
+ * will be set.
+ */
+ PyArrayObject* obj_to_array_contiguous_force_conversion(PyObject* input,
+ int typecode,
+ int* is_new_object)
+ {
+ int is_new1 = 0;
+ int is_new2 = 0;
+ PyArrayObject* ary2;
+ PyArrayObject* ary1 = obj_to_array_force_conversion(input, typecode,
+ &is_new1);
+ if (ary1)
+ {
+ ary2 = make_contiguous(ary1, &is_new2, 0, 0);
+ if ( is_new1 && is_new2)
+ {
+ Py_DECREF(ary1);
+ }
+ ary1 = ary2;
+ }
+ *is_new_object = is_new1 || is_new2;
+ return ary1;
+ }
+
+ /* Convert a given PyObject to a Fortran-ordered PyArrayObject of the
+ * specified type. If the input object is not a Fortran-ordered
+ * PyArrayObject, a new one will be created and the new object flag
+ * will be set.
+ */
+ PyArrayObject* obj_to_array_fortran_force_conversion(PyObject* input,
+ int typecode,
+ int* is_new_object)
+ {
+ int is_new1 = 0;
+ int is_new2 = 0;
+ PyArrayObject* ary2;
+ PyArrayObject* ary1 = obj_to_array_force_conversion(input, typecode,
+ &is_new1);
+ if (ary1)
+ {
+ ary2 = make_fortran(ary1, &is_new2, 0, 0);
+ if (is_new1 && is_new2)
+ {
+ Py_DECREF(ary1);
+ }
+ ary1 = ary2;
+ }
+ *is_new_object = is_new1 || is_new2;
+ return ary1;
+ }
+ /* End modifications by Ilmar M. Wilbers
+ */
+
+} /* end fragment */
+
+
+/**********************************************************************/
+
+%fragment("NumPy_Array_Requirements", "header",
+ fragment="NumPy_Backward_Compatibility",
+ fragment="NumPy_Macros")
+{
+ /* Test whether a python object is contiguous. If array is
+ * contiguous, return 1. Otherwise, set the python error string and
+ * return 0.
+ */
+ int require_contiguous(PyArrayObject* ary)
+ {
+ int contiguous = 1;
+ if (!array_is_contiguous(ary))
+ {
+ PyErr_SetString(PyExc_TypeError,
+ "Array must be contiguous. A non-contiguous array was given");
+ contiguous = 0;
+ }
+ return contiguous;
+ }
+
+ /* Require that a numpy array is not byte-swapped. If the array is
+ * not byte-swapped, return 1. Otherwise, set the python error string
+ * and return 0.
+ */
+ int require_native(PyArrayObject* ary)
+ {
+ int native = 1;
+ if (!array_is_native(ary))
+ {
+ PyErr_SetString(PyExc_TypeError,
+ "Array must have native byteorder. "
+ "A byte-swapped array was given");
+ native = 0;
+ }
+ return native;
+ }
+
+ /* Require the given PyArrayObject to have a specified number of
+ * dimensions. If the array has the specified number of dimensions,
+ * return 1. Otherwise, set the python error string and return 0.
+ */
+ int require_dimensions(PyArrayObject* ary, int exact_dimensions)
+ {
+ int success = 1;
+ if (array_numdims(ary) != exact_dimensions)
+ {
+ PyErr_Format(PyExc_TypeError,
+ "Array must have %d dimensions. Given array has %d dimensions",
+ exact_dimensions, array_numdims(ary));
+ success = 0;
+ }
+ return success;
+ }
+
+ /* Require the given PyArrayObject to have one of a list of specified
+ * number of dimensions. If the array has one of the specified number
+ * of dimensions, return 1. Otherwise, set the python error string
+ * and return 0.
+ */
+ int require_dimensions_n(PyArrayObject* ary, int* exact_dimensions, int n)
+ {
+ int success = 0;
+ int i;
+ char dims_str[255] = "";
+ char s[255];
+ for (i = 0; i < n && !success; i++)
+ {
+ if (array_numdims(ary) == exact_dimensions[i])
+ {
+ success = 1;
+ }
+ }
+ if (!success)
+ {
+ for (i = 0; i < n-1; i++)
+ {
+ sprintf(s, "%d, ", exact_dimensions[i]);
+ strcat(dims_str,s);
+ }
+ sprintf(s, " or %d", exact_dimensions[n-1]);
+ strcat(dims_str,s);
+ PyErr_Format(PyExc_TypeError,
+ "Array must have %s dimensions. Given array has %d dimensions",
+ dims_str, array_numdims(ary));
+ }
+ return success;
+ }
+
+ /* Require the given PyArrayObject to have a specified shape. If the
+ * array has the specified shape, return 1. Otherwise, set the python
+ * error string and return 0.
+ */
+ int require_size(PyArrayObject* ary, npy_intp* size, int n)
+ {
+ int i;
+ int success = 1;
+ int len;
+ char desired_dims[255] = "[";
+ char s[255];
+ char actual_dims[255] = "[";
+ for(i=0; i < n;i++)
+ {
+ if (size[i] != -1 && size[i] != array_size(ary,i))
+ {
+ success = 0;
+ }
+ }
+ if (!success)
+ {
+ for (i = 0; i < n; i++)
+ {
+ if (size[i] == -1)
+ {
+ sprintf(s, "*,");
+ }
+ else
+ {
+ sprintf(s, "%ld,", (long int)size[i]);
+ }
+ strcat(desired_dims,s);
+ }
+ len = strlen(desired_dims);
+ desired_dims[len-1] = ']';
+ for (i = 0; i < n; i++)
+ {
+ sprintf(s, "%ld,", (long int)array_size(ary,i));
+ strcat(actual_dims,s);
+ }
+ len = strlen(actual_dims);
+ actual_dims[len-1] = ']';
+ PyErr_Format(PyExc_TypeError,
+ "Array must have shape of %s. Given array has shape of %s",
+ desired_dims, actual_dims);
+ }
+ return success;
+ }
+
+ /* Require the given PyArrayObject to to be FORTRAN ordered. If the
+ * the PyArrayObject is already FORTRAN ordered, do nothing. Else,
+ * set the FORTRAN ordering flag and recompute the strides.
+ */
+ int require_fortran(PyArrayObject* ary)
+ {
+ int success = 1;
+ int nd = array_numdims(ary);
+ int i;
+ if (array_is_fortran(ary)) return success;
+ /* Set the FORTRAN ordered flag */
+ ary->flags = NPY_FARRAY;
+ /* Recompute the strides */
+ ary->strides[0] = ary->strides[nd-1];
+ for (i=1; i < nd; ++i)
+ ary->strides[i] = ary->strides[i-1] * array_size(ary,i-1);
+ return success;
+ }
+}
+
+/* Combine all NumPy fragments into one for convenience */
+%fragment("NumPy_Fragments", "header",
+ fragment="NumPy_Backward_Compatibility",
+ fragment="NumPy_Macros",
+ fragment="NumPy_Utilities",
+ fragment="NumPy_Object_to_Array",
+ fragment="NumPy_Array_Requirements") { }
+
+/* End John Hunter translation (with modifications by Bill Spotz)
+ */
+
+/* %numpy_typemaps() macro
+ *
+ * This macro defines a family of 42 typemaps that allow C arguments
+ * of the form
+ *
+ * (DATA_TYPE IN_ARRAY1[ANY])
+ * (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
+ * (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
+ *
+ * (DATA_TYPE IN_ARRAY2[ANY][ANY])
+ * (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
+ * (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
+ *
+ * (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
+ * (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
+ * (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
+ *
+ * (DATA_TYPE INPLACE_ARRAY1[ANY])
+ * (DATA_TYPE* INPLACE_ARRAY1)
+ * (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
+ * (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
+ *
+ * (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
+ * (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
+ * (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
+ *
+ * (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
+ * (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3)
+ * (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ * (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3)
+ *
+ * (DATA_TYPE ARGOUT_ARRAY1[ANY])
+ * (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
+ * (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
+ *
+ * (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
+ *
+ * (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
+ *
+ * (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)
+ * (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)
+ *
+ * (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
+ * (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)
+ * (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
+ * (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)
+ *
+ * (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
+ * (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)
+ * (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
+ * (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)
+ *
+ * where "DATA_TYPE" is any type supported by the NumPy module, and
+ * "DIM_TYPE" is any int-like type suitable for specifying dimensions.
+ * The difference between "ARRAY" typemaps and "FARRAY" typemaps is
+ * that the "FARRAY" typemaps expect FORTRAN ordering of
+ * multidimensional arrays. In python, the dimensions will not need
+ * to be specified (except for the "DATA_TYPE* ARGOUT_ARRAY1"
+ * typemaps). The IN_ARRAYs can be a numpy array or any sequence that
+ * can be converted to a numpy array of the specified type. The
+ * INPLACE_ARRAYs must be numpy arrays of the appropriate type. The
+ * ARGOUT_ARRAYs will be returned as new numpy arrays of the
+ * appropriate type.
+ *
+ * These typemaps can be applied to existing functions using the
+ * %apply directive. For example:
+ *
+ * %apply (double* IN_ARRAY1, int DIM1) {(double* series, int length)};
+ * double prod(double* series, int length);
+ *
+ * %apply (int DIM1, int DIM2, double* INPLACE_ARRAY2)
+ * {(int rows, int cols, double* matrix )};
+ * void floor(int rows, int cols, double* matrix, double f);
+ *
+ * %apply (double IN_ARRAY3[ANY][ANY][ANY])
+ * {(double tensor[2][2][2] )};
+ * %apply (double ARGOUT_ARRAY3[ANY][ANY][ANY])
+ * {(double low[2][2][2] )};
+ * %apply (double ARGOUT_ARRAY3[ANY][ANY][ANY])
+ * {(double upp[2][2][2] )};
+ * void luSplit(double tensor[2][2][2],
+ * double low[2][2][2],
+ * double upp[2][2][2] );
+ *
+ * or directly with
+ *
+ * double prod(double* IN_ARRAY1, int DIM1);
+ *
+ * void floor(int DIM1, int DIM2, double* INPLACE_ARRAY2, double f);
+ *
+ * void luSplit(double IN_ARRAY3[ANY][ANY][ANY],
+ * double ARGOUT_ARRAY3[ANY][ANY][ANY],
+ * double ARGOUT_ARRAY3[ANY][ANY][ANY]);
+ */
+
+%define %numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE)
+
+/************************/
+/* Input Array Typemaps */
+/************************/
+
+/* Typemap suite for (DATA_TYPE IN_ARRAY1[ANY])
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE IN_ARRAY1[ANY])
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE IN_ARRAY1[ANY])
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[1] = { $1_dim0 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 1) ||
+ !require_size(array, size, 1)) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+%typemap(freearg)
+ (DATA_TYPE IN_ARRAY1[ANY])
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[1] = { -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 1) ||
+ !require_size(array, size, 1)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+}
+%typemap(freearg)
+ (DATA_TYPE* IN_ARRAY1, DIM_TYPE DIM1)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[1] = {-1};
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 1) ||
+ !require_size(array, size, 1)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DATA_TYPE*) array_data(array);
+}
+%typemap(freearg)
+ (DIM_TYPE DIM1, DATA_TYPE* IN_ARRAY1)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE IN_ARRAY2[ANY][ANY])
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE IN_ARRAY2[ANY][ANY])
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE IN_ARRAY2[ANY][ANY])
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[2] = { $1_dim0, $1_dim1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 2) ||
+ !require_size(array, size, 2)) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+%typemap(freearg)
+ (DATA_TYPE IN_ARRAY2[ANY][ANY])
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[2] = { -1, -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 2) ||
+ !require_size(array, size, 2)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+}
+%typemap(freearg)
+ (DATA_TYPE* IN_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[2] = { -1, -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 2) ||
+ !require_size(array, size, 2)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DATA_TYPE*) array_data(array);
+}
+%typemap(freearg)
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_ARRAY2)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[2] = { -1, -1 };
+ array = obj_to_array_fortran_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 2) ||
+ !require_size(array, size, 2) || !require_fortran(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+}
+%typemap(freearg)
+ (DATA_TYPE* IN_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[2] = { -1, -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 2) ||
+ !require_size(array, size, 2) || !require_fortran(array)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DATA_TYPE*) array_data(array);
+}
+%typemap(freearg)
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* IN_FARRAY2)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 3) ||
+ !require_size(array, size, 3)) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+%typemap(freearg)
+ (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
+ * DIM_TYPE DIM3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[3] = { -1, -1, -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 3) ||
+ !require_size(array, size, 3)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+ $4 = (DIM_TYPE) array_size(array,2);
+}
+%typemap(freearg)
+ (DATA_TYPE* IN_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
+ * DATA_TYPE* IN_ARRAY3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[3] = { -1, -1, -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 3) ||
+ !require_size(array, size, 3)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DIM_TYPE) array_size(array,2);
+ $4 = (DATA_TYPE*) array_data(array);
+}
+%typemap(freearg)
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_ARRAY3)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
+ * DIM_TYPE DIM3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[3] = { -1, -1, -1 };
+ array = obj_to_array_fortran_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 3) ||
+ !require_size(array, size, 3) | !require_fortran(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+ $4 = (DIM_TYPE) array_size(array,2);
+}
+%typemap(freearg)
+ (DATA_TYPE* IN_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
+ * DATA_TYPE* IN_FARRAY3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
+{
+ $1 = is_array($input) || PySequence_Check($input);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
+ (PyArrayObject* array=NULL, int is_new_object=0)
+{
+ npy_intp size[3] = { -1, -1, -1 };
+ array = obj_to_array_contiguous_force_conversion($input, DATA_TYPECODE,
+ &is_new_object);
+ if (!array || !require_dimensions(array, 3) ||
+ !require_size(array, size, 3) || !require_fortran(array)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DIM_TYPE) array_size(array,2);
+ $4 = (DATA_TYPE*) array_data(array);
+}
+%typemap(freearg)
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* IN_FARRAY3)
+{
+ if (is_new_object$argnum && array$argnum)
+ { Py_DECREF(array$argnum); }
+}
+
+/***************************/
+/* In-Place Array Typemaps */
+/***************************/
+
+/* Typemap suite for (DATA_TYPE INPLACE_ARRAY1[ANY])
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE INPLACE_ARRAY1[ANY])
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE INPLACE_ARRAY1[ANY])
+ (PyArrayObject* array=NULL)
+{
+ npy_intp size[1] = { $1_dim0 };
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,1) || !require_size(array, size, 1) ||
+ !require_contiguous(array) || !require_native(array)) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY1)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* INPLACE_ARRAY1)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* INPLACE_ARRAY1)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,1) || !require_contiguous(array)
+ || !require_native(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* INPLACE_ARRAY1, DIM_TYPE DIM1)
+ (PyArrayObject* array=NULL, int i=1)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,1) || !require_contiguous(array)
+ || !require_native(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = 1;
+ for (i=0; i < array_numdims(array); ++i) $2 *= array_size(array,i);
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DATA_TYPE* INPLACE_ARRAY1)
+ (PyArrayObject* array=NULL, int i=0)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,1) || !require_contiguous(array)
+ || !require_native(array)) SWIG_fail;
+ $1 = 1;
+ for (i=0; i < array_numdims(array); ++i) $1 *= array_size(array,i);
+ $2 = (DATA_TYPE*) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])
+ (PyArrayObject* array=NULL)
+{
+ npy_intp size[2] = { $1_dim0, $1_dim1 };
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,2) || !require_size(array, size, 2) ||
+ !require_contiguous(array) || !require_native(array)) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* INPLACE_ARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,2) || !require_contiguous(array)
+ || !require_native(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_ARRAY2)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,2) || !require_contiguous(array) ||
+ !require_native(array)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DATA_TYPE*) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* INPLACE_FARRAY2, DIM_TYPE DIM1, DIM_TYPE DIM2)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,2) || !require_contiguous(array)
+ || !require_native(array) || !require_fortran(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DATA_TYPE* INPLACE_FARRAY2)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,2) || !require_contiguous(array) ||
+ !require_native(array) || !require_fortran(array)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DATA_TYPE*) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])
+ (PyArrayObject* array=NULL)
+{
+ npy_intp size[3] = { $1_dim0, $1_dim1, $1_dim2 };
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,3) || !require_size(array, size, 3) ||
+ !require_contiguous(array) || !require_native(array)) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
+ * DIM_TYPE DIM3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* INPLACE_ARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,3) || !require_contiguous(array) ||
+ !require_native(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+ $4 = (DIM_TYPE) array_size(array,2);
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
+ * DATA_TYPE* INPLACE_ARRAY3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_ARRAY3)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,3) || !require_contiguous(array)
+ || !require_native(array)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DIM_TYPE) array_size(array,2);
+ $4 = (DATA_TYPE*) array_data(array);
+}
+
+/* Typemap suite for (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2,
+ * DIM_TYPE DIM3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* INPLACE_FARRAY3, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,3) || !require_contiguous(array) ||
+ !require_native(array) || !require_fortran(array)) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+ $2 = (DIM_TYPE) array_size(array,0);
+ $3 = (DIM_TYPE) array_size(array,1);
+ $4 = (DIM_TYPE) array_size(array,2);
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
+ * DATA_TYPE* INPLACE_FARRAY3)
+ */
+%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY,
+ fragment="NumPy_Macros")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3)
+{
+ $1 = is_array($input) && PyArray_EquivTypenums(array_type($input),
+ DATA_TYPECODE);
+}
+%typemap(in,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DATA_TYPE* INPLACE_FARRAY3)
+ (PyArrayObject* array=NULL)
+{
+ array = obj_to_array_no_conversion($input, DATA_TYPECODE);
+ if (!array || !require_dimensions(array,3) || !require_contiguous(array)
+ || !require_native(array) || !require_fortran(array)) SWIG_fail;
+ $1 = (DIM_TYPE) array_size(array,0);
+ $2 = (DIM_TYPE) array_size(array,1);
+ $3 = (DIM_TYPE) array_size(array,2);
+ $4 = (DATA_TYPE*) array_data(array);
+}
+
+/*************************/
+/* Argout Array Typemaps */
+/*************************/
+
+/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY1[ANY])
+ */
+%typemap(in,numinputs=0,
+ fragment="NumPy_Backward_Compatibility,NumPy_Macros")
+ (DATA_TYPE ARGOUT_ARRAY1[ANY])
+ (PyObject * array = NULL)
+{
+ npy_intp dims[1] = { $1_dim0 };
+ array = PyArray_SimpleNew(1, dims, DATA_TYPECODE);
+ if (!array) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+%typemap(argout)
+ (DATA_TYPE ARGOUT_ARRAY1[ANY])
+{
+ $result = SWIG_Python_AppendOutput($result,array$argnum);
+}
+
+/* Typemap suite for (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
+ */
+%typemap(in,numinputs=1,
+ fragment="NumPy_Fragments")
+ (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
+ (PyObject * array = NULL)
+{
+ npy_intp dims[1];
+ if (!PyInt_Check($input))
+ {
+ const char* typestring = pytype_string($input);
+ PyErr_Format(PyExc_TypeError,
+ "Int dimension expected. '%s' given.",
+ typestring);
+ SWIG_fail;
+ }
+ $2 = (DIM_TYPE) PyInt_AsLong($input);
+ dims[0] = (npy_intp) $2;
+ array = PyArray_SimpleNew(1, dims, DATA_TYPECODE);
+ if (!array) SWIG_fail;
+ $1 = (DATA_TYPE*) array_data(array);
+}
+%typemap(argout)
+ (DATA_TYPE* ARGOUT_ARRAY1, DIM_TYPE DIM1)
+{
+ $result = SWIG_Python_AppendOutput($result,array$argnum);
+}
+
+/* Typemap suite for (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
+ */
+%typemap(in,numinputs=1,
+ fragment="NumPy_Fragments")
+ (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
+ (PyObject * array = NULL)
+{
+ npy_intp dims[1];
+ if (!PyInt_Check($input))
+ {
+ const char* typestring = pytype_string($input);
+ PyErr_Format(PyExc_TypeError,
+ "Int dimension expected. '%s' given.",
+ typestring);
+ SWIG_fail;
+ }
+ $1 = (DIM_TYPE) PyInt_AsLong($input);
+ dims[0] = (npy_intp) $1;
+ array = PyArray_SimpleNew(1, dims, DATA_TYPECODE);
+ if (!array) SWIG_fail;
+ $2 = (DATA_TYPE*) array_data(array);
+}
+%typemap(argout)
+ (DIM_TYPE DIM1, DATA_TYPE* ARGOUT_ARRAY1)
+{
+ $result = SWIG_Python_AppendOutput($result,array$argnum);
+}
+
+/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
+ */
+%typemap(in,numinputs=0,
+ fragment="NumPy_Backward_Compatibility,NumPy_Macros")
+ (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
+ (PyObject * array = NULL)
+{
+ npy_intp dims[2] = { $1_dim0, $1_dim1 };
+ array = PyArray_SimpleNew(2, dims, DATA_TYPECODE);
+ if (!array) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+%typemap(argout)
+ (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])
+{
+ $result = SWIG_Python_AppendOutput($result,array$argnum);
+}
+
+/* Typemap suite for (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
+ */
+%typemap(in,numinputs=0,
+ fragment="NumPy_Backward_Compatibility,NumPy_Macros")
+ (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
+ (PyObject * array = NULL)
+{
+ npy_intp dims[3] = { $1_dim0, $1_dim1, $1_dim2 };
+ array = PyArray_SimpleNew(3, dims, DATA_TYPECODE);
+ if (!array) SWIG_fail;
+ $1 = ($1_ltype) array_data(array);
+}
+%typemap(argout)
+ (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])
+{
+ $result = SWIG_Python_AppendOutput($result,array$argnum);
+}
+
+/*****************************/
+/* Argoutview Array Typemaps */
+/*****************************/
+
+/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)
+ */
+%typemap(in,numinputs=0)
+ (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1 )
+ (DATA_TYPE* data_temp , DIM_TYPE dim_temp)
+{
+ $1 = &data_temp;
+ $2 = &dim_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility")
+ (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)
+{
+ npy_intp dims[1] = { *$2 };
+ PyObject * array = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$1));
+ if (!array) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,array);
+}
+
+/* Typemap suite for (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)
+ */
+%typemap(in,numinputs=0)
+ (DIM_TYPE* DIM1 , DATA_TYPE** ARGOUTVIEW_ARRAY1)
+ (DIM_TYPE dim_temp, DATA_TYPE* data_temp )
+{
+ $1 = &dim_temp;
+ $2 = &data_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility")
+ (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)
+{
+ npy_intp dims[1] = { *$1 };
+ PyObject * array = PyArray_SimpleNewFromData(1, dims, DATA_TYPECODE, (void*)(*$2));
+ if (!array) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,array);
+}
+
+/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
+ */
+%typemap(in,numinputs=0)
+ (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 )
+ (DATA_TYPE* data_temp , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp)
+{
+ $1 = &data_temp;
+ $2 = &dim1_temp;
+ $3 = &dim2_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility")
+ (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
+{
+ npy_intp dims[2] = { *$2, *$3 };
+ PyObject * array = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1));
+ if (!array) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,array);
+}
+
+/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)
+ */
+%typemap(in,numinputs=0)
+ (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEW_ARRAY2)
+ (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp )
+{
+ $1 = &dim1_temp;
+ $2 = &dim2_temp;
+ $3 = &data_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility")
+ (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)
+{
+ npy_intp dims[2] = { *$1, *$2 };
+ PyObject * array = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3));
+ if (!array) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,array);
+}
+
+/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
+ */
+%typemap(in,numinputs=0)
+ (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1 , DIM_TYPE* DIM2 )
+ (DATA_TYPE* data_temp , DIM_TYPE dim1_temp, DIM_TYPE dim2_temp)
+{
+ $1 = &data_temp;
+ $2 = &dim1_temp;
+ $3 = &dim2_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
+ (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)
+{
+ npy_intp dims[2] = { *$2, *$3 };
+ PyObject * obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$1));
+ PyArrayObject * array = (PyArrayObject*) obj;
+ if (!array || !require_fortran(array)) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,obj);
+}
+
+/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)
+ */
+%typemap(in,numinputs=0)
+ (DIM_TYPE* DIM1 , DIM_TYPE* DIM2 , DATA_TYPE** ARGOUTVIEW_FARRAY2)
+ (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DATA_TYPE* data_temp )
+{
+ $1 = &dim1_temp;
+ $2 = &dim2_temp;
+ $3 = &data_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
+ (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)
+{
+ npy_intp dims[2] = { *$1, *$2 };
+ PyObject * obj = PyArray_SimpleNewFromData(2, dims, DATA_TYPECODE, (void*)(*$3));
+ PyArrayObject * array = (PyArrayObject*) obj;
+ if (!array || !require_fortran(array)) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,obj);
+}
+
+/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
+ DIM_TYPE* DIM3)
+ */
+%typemap(in,numinputs=0)
+ (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
+ (DATA_TYPE* data_temp, DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp)
+{
+ $1 = &data_temp;
+ $2 = &dim1_temp;
+ $3 = &dim2_temp;
+ $4 = &dim3_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility")
+ (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
+{
+ npy_intp dims[3] = { *$2, *$3, *$4 };
+ PyObject * array = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1));
+ if (!array) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,array);
+}
+
+/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3,
+ DATA_TYPE** ARGOUTVIEW_ARRAY3)
+ */
+%typemap(in,numinputs=0)
+ (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)
+ (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp)
+{
+ $1 = &dim1_temp;
+ $2 = &dim2_temp;
+ $3 = &dim3_temp;
+ $4 = &data_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility")
+ (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_ARRAY3)
+{
+ npy_intp dims[3] = { *$1, *$2, *$3 };
+ PyObject * array = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$3));
+ if (!array) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,array);
+}
+
+/* Typemap suite for (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2,
+ DIM_TYPE* DIM3)
+ */
+%typemap(in,numinputs=0)
+ (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
+ (DATA_TYPE* data_temp, DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp)
+{
+ $1 = &data_temp;
+ $2 = &dim1_temp;
+ $3 = &dim2_temp;
+ $4 = &dim3_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
+ (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3)
+{
+ npy_intp dims[3] = { *$2, *$3, *$4 };
+ PyObject * obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$1));
+ PyArrayObject * array = (PyArrayObject*) obj;
+ if (!array || require_fortran(array)) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,obj);
+}
+
+/* Typemap suite for (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3,
+ DATA_TYPE** ARGOUTVIEW_FARRAY3)
+ */
+%typemap(in,numinputs=0)
+ (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)
+ (DIM_TYPE dim1_temp, DIM_TYPE dim2_temp, DIM_TYPE dim3_temp, DATA_TYPE* data_temp)
+{
+ $1 = &dim1_temp;
+ $2 = &dim2_temp;
+ $3 = &dim3_temp;
+ $4 = &data_temp;
+}
+%typemap(argout,
+ fragment="NumPy_Backward_Compatibility,NumPy_Array_Requirements")
+ (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** ARGOUTVIEW_FARRAY3)
+{
+ npy_intp dims[3] = { *$1, *$2, *$3 };
+ PyObject * obj = PyArray_SimpleNewFromData(3, dims, DATA_TYPECODE, (void*)(*$3));
+ PyArrayObject * array = (PyArrayObject*) obj;
+ if (!array || require_fortran(array)) SWIG_fail;
+ $result = SWIG_Python_AppendOutput($result,obj);
+}
+
+%enddef /* %numpy_typemaps() macro */
+/* *************************************************************** */
+
+/* Concrete instances of the %numpy_typemaps() macro: Each invocation
+ * below applies all of the typemaps above to the specified data type.
+ */
+%numpy_typemaps(signed char , NPY_BYTE , int)
+%numpy_typemaps(unsigned char , NPY_UBYTE , int)
+%numpy_typemaps(short , NPY_SHORT , int)
+%numpy_typemaps(unsigned short , NPY_USHORT , int)
+%numpy_typemaps(int , NPY_INT , int)
+%numpy_typemaps(unsigned int , NPY_UINT , int)
+%numpy_typemaps(long , NPY_LONG , int)
+%numpy_typemaps(unsigned long , NPY_ULONG , int)
+%numpy_typemaps(long long , NPY_LONGLONG , int)
+%numpy_typemaps(unsigned long long, NPY_ULONGLONG, int)
+%numpy_typemaps(float , NPY_FLOAT , int)
+%numpy_typemaps(double , NPY_DOUBLE , int)
+
+/* ***************************************************************
+ * The follow macro expansion does not work, because C++ bool is 4
+ * bytes and NPY_BOOL is 1 byte
+ *
+ * %numpy_typemaps(bool, NPY_BOOL, int)
+ */
+
+/* ***************************************************************
+ * On my Mac, I get the following warning for this macro expansion:
+ * 'swig/python detected a memory leak of type 'long double *', no destructor found.'
+ *
+ * %numpy_typemaps(long double, NPY_LONGDOUBLE, int)
+ */
+
+/* ***************************************************************
+ * Swig complains about a syntax error for the following macro
+ * expansions:
+ *
+ * %numpy_typemaps(complex float, NPY_CFLOAT , int)
+ *
+ * %numpy_typemaps(complex double, NPY_CDOUBLE, int)
+ *
+ * %numpy_typemaps(complex long double, NPY_CLONGDOUBLE, int)
+ */
+
+#endif /* SWIGPYTHON */