/* Tuplr: A programming language * Copyright (C) 2008-2009 David Robillard * * Tuplr is free software: you can redistribute it and/or modify it under * the terms of the GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * Tuplr is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General * Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with Tuplr. If not, see . */ #include #include #include #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/DerivedTypes.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/PassManager.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Scalar.h" #include "tuplr.hpp" using namespace llvm; using namespace std; using boost::format; static inline Value* llVal(CValue v) { return static_cast(v); } static inline Function* llFunc(CFunction f) { return static_cast(f); } static const Type* llType(const AType* t) { if (t->kind == AType::PRIM) { if (t->at(0)->str() == "Nothing") return Type::VoidTy; if (t->at(0)->str() == "Bool") return Type::Int1Ty; if (t->at(0)->str() == "Int") return Type::Int32Ty; if (t->at(0)->str() == "Float") return Type::FloatTy; throw Error(t->loc, string("Unknown primitive type `") + t->str() + "'"); /*} else if (t->kind == AType::EXPR && t->at(0)->str() == "Fn") { AType* retT = t->at(2)->as(); if (!llType(retT)) return NULL; vector cprot; const ATuple* prot = t->at(1)->to(); for (size_t i = 0; i < prot->size(); ++i) { AType* at = prot->at(i)->to(); const Type* lt = llType(at); if (lt) cprot.push_back(lt); else return NULL; } FunctionType* fT = FunctionType::get(llType(retT), cprot, false); return PointerType::get(fT, 0); */ } return NULL; // non-primitive type } /*************************************************************************** * LLVM Engine * ***************************************************************************/ struct LLVMEngine : public Engine { LLVMEngine() : module(new Module("tuplr")) , engine(ExecutionEngine::create(module)) , emp(module) , opt(&emp) { // Set up optimiser pipeline const TargetData* target = engine->getTargetData(); opt.add(new TargetData(*target)); // Register target arch opt.add(createInstructionCombiningPass()); // Simple optimizations opt.add(createReassociatePass()); // Reassociate expressions opt.add(createGVNPass()); // Eliminate Common Subexpressions opt.add(createCFGSimplificationPass()); // Simplify control flow // Declare host provided allocation primitive std::vector argsT(1, Type::Int32Ty); // unsigned size argsT.push_back(Type::Int8Ty); // char tag FunctionType* funcT = FunctionType::get(PointerType::get(Type::Int8Ty, 0), argsT, false); alloc = Function::Create(funcT, Function::ExternalLinkage, "tuplr_gc_allocate", module); } CFunction startFunction(CEnv& cenv, const std::string& name, const AType* retT, const ATuple& argsT, const vector argNames) { Function::LinkageTypes linkage = Function::ExternalLinkage; vector cprot; for (size_t i = 0; i < argsT.size(); ++i) { AType* at = argsT.at(i)->as(); THROW_IF(!llType(at), Cursor(), string("parameter has non-concrete type ") + at->str()) cprot.push_back(llType(at)); } THROW_IF(!llType(retT), Cursor(), "return has non-concrete type"); FunctionType* fT = FunctionType::get(llType(retT), cprot, false); Function* f = Function::Create(fT, linkage, name, module); // Note f->getName() may be different from name // however LLVM chooses to mangle is fine, we keep a pointer // Set argument names in generated code Function::arg_iterator a = f->arg_begin(); if (!argNames.empty()) for (size_t i = 0; i != argsT.size(); ++a, ++i) a->setName(argNames.at(i)); BasicBlock* bb = BasicBlock::Create("entry", f); builder.SetInsertPoint(bb); return f; } void finishFunction(CEnv& cenv, CFunction f, const AType* retT, CValue ret) { if (retT->concrete()) { Value* retVal = llVal(ret); builder.CreateRet(retVal); } else { builder.CreateRetVoid(); } /*std::cerr << "MODULE {" << endl; module->dump(); std::cerr << "}" << endl;*/ verifyFunction(*static_cast(f)); if (cenv.args.find("-g") == cenv.args.end()) opt.run(*static_cast(f)); } void eraseFunction(CEnv& cenv, CFunction f) { if (f) llFunc(f)->eraseFromParent(); } void writeModule(CEnv& cenv, std::ostream& os) { AssemblyAnnotationWriter writer; module->print(os, &writer); } const string call(CEnv& cenv, CFunction f, AType* retT) { void* fp = engine->getPointerToFunction(llFunc(f)); const Type* t = llType(retT); THROW_IF(!fp, Cursor(), "unable to get function pointer"); THROW_IF(!t, Cursor(), "function with non-concrete return type called"); std::stringstream ss; if (t == Type::Int32Ty) ss << ((int32_t (*)())fp)(); else if (t == Type::FloatTy) ss << showpoint << ((float (*)())fp)(); else if (t == Type::Int1Ty) ss << (((bool (*)())fp)() ? "#t" : "#f"); else ss << ((void* (*)())fp)(); return ss.str(); } Module* module; ExecutionEngine* engine; IRBuilder<> builder; CFunction alloc; ExistingModuleProvider emp; FunctionPassManager opt; }; static LLVMEngine* llEngine(CEnv& cenv) { return reinterpret_cast(cenv.engine()); } /// Shared library entry point Engine* tuplr_new_engine() { return new LLVMEngine(); } /// Shared library entry point void tuplr_free_engine(Engine* engine) { delete (LLVMEngine*)engine; } /*************************************************************************** * Code Generation * ***************************************************************************/ #define LITERAL(CT, NAME, COMPILED) \ template<> CValue ALiteral::compile(CEnv& cenv) { return (COMPILED); } \ template<> void \ ALiteral::constrain(TEnv& tenv, Constraints& c) const { \ c.constrain(tenv, this, tenv.named(NAME)); \ } /// Literal template instantiations LITERAL(int32_t, "Int", ConstantInt::get(Type::Int32Ty, val, true)) LITERAL(float, "Float", ConstantFP::get(Type::FloatTy, val)) LITERAL(bool, "Bool", ConstantInt::get(Type::Int1Ty, val, false)) CValue ASymbol::compile(CEnv& cenv) { return cenv.vals.ref(this); } void AFn::lift(CEnv& cenv) { cenv.push(); for (const_iterator p = prot()->begin(); p != prot()->end(); ++p) cenv.def((*p)->as(), *p, NULL, NULL); // Lift body for (size_t i = 2; i < size(); ++i) at(i)->lift(cenv); cenv.pop(); AType* type = cenv.type(this); if (impls.find(type) || !type->concrete()) return; AType* protT = type->at(1)->as(); liftCall(cenv, *protT); } void AFn::liftCall(CEnv& cenv, const AType& argsT) { TEnv::GenericTypes::const_iterator gt = cenv.tenv.genericTypes.find(this); assert(gt != cenv.tenv.genericTypes.end()); AType* genericType = new AType(*gt->second); AType* thisType = genericType; Subst argsSubst; if (!genericType->concrete()) { // Build substitution to apply to generic type assert(argsT.size() == prot()->size()); ATuple* genericProtT = gt->second->at(1)->as(); for (size_t i = 0; i < argsT.size(); ++i) { const AType* genericArgT = genericProtT->at(i)->to(); AType* callArgT = argsT.at(i)->to(); assert(genericArgT); assert(callArgT); if (callArgT->kind == AType::EXPR) { assert(genericArgT->kind == AType::EXPR); assert(callArgT->size() == genericArgT->size()); for (size_t i = 0; i < callArgT->size(); ++i) { AType* gT = genericArgT->at(i)->to(); AType* aT = callArgT->at(i)->to(); if (gT && aT) argsSubst.add(gT, aT); } } else { argsSubst.add(genericArgT, callArgT); } } // Apply substitution to get concrete type for this call thisType = argsSubst.apply(genericType)->as(); THROW_IF(!thisType->concrete(), loc, string("unable to resolve concrete type for function :: ") + thisType->str() + "\n" + this->str()); } Object::pool.addRoot(thisType); if (impls.find(thisType)) return; ATuple* protT = thisType->at(1)->as(); vector argNames; for (size_t i = 0; i < prot()->size(); ++i) { argNames.push_back(prot()->at(i)->str()); } // Write function declaration const string name = (this->name == "") ? cenv.penv.gensymstr("_fn") : this->name; Function* f = llFunc(cenv.engine()->startFunction(cenv, name, thisType->at(thisType->size()-1)->to(), *protT, argNames)); cenv.push(); Subst oldSubst = cenv.tsubst; cenv.tsubst = Subst::compose(cenv.tsubst, Subst::compose(argsSubst, subst)); //#define EXPLICIT_STACK_FRAMES 1 #ifdef EXPLICIT_STACK_FRAMES vector types; types.push_back(Type::Int8Ty); types.push_back(Type::Int8Ty); size_t s = 16; // stack frame size in bits #endif // Bind argument values in CEnv vector args; const_iterator p = prot()->begin(); size_t i = 0; for (Function::arg_iterator a = f->arg_begin(); a != f->arg_end(); ++a, ++p, ++i) { AType* t = protT->at(i)->as(); const Type* lt = llType(t); THROW_IF(!lt, loc, "untyped parameter\n"); cenv.def((*p)->as(), *p, t, &*a); #ifdef EXPLICIT_STACK_FRAMES types.push_back(lt); s += std::max(lt->getPrimitiveSizeInBits(), unsigned(8)); #endif } #ifdef EXPLICIT_STACK_FRAMES IRBuilder<> builder = llEngine(cenv)->builder; // Scan out definitions for (size_t i = 0; i < size(); ++i) { ADef* def = at(i)->to(); if (def) { const Type* lt = llType(cenv.type(def->at(2))); THROW_IF(!lt, loc, "untyped definition\n"); types.push_back(lt); s += std::max(lt->getPrimitiveSizeInBits(), unsigned(8)); } } // Create stack frame StructType* frameT = StructType::get(types, false); Value* tag = ConstantInt::get(Type::Int8Ty, GC::TAG_FRAME); Value* frameSize = ConstantInt::get(Type::Int32Ty, s / 8); Value* frame = builder.CreateCall2(llVal(cenv.alloc), frameSize, tag, "frame"); Value* framePtr = builder.CreateBitCast(frame, PointerType::get(frameT, 0)); // Bind parameter values in stack frame i = 2; for (Function::arg_iterator a = f->arg_begin(); a != f->arg_end(); ++a, ++i) { Value* v = builder.CreateStructGEP(framePtr, i, "arg"); builder.CreateStore(&*a, v); } #endif // Write function body try { // Define value first for recursion cenv.precompile(this, f); impls.push_back(make_pair(thisType, f)); CValue retVal = NULL; for (size_t i = 2; i < size(); ++i) retVal = cenv.compile(at(i)); cenv.engine()->finishFunction(cenv, f, cenv.type(at(size()-1)), retVal); } catch (Error& e) { f->eraseFromParent(); // Error reading body, remove function cenv.pop(); throw e; } cenv.tsubst = oldSubst; cenv.pop(); } CValue AFn::compile(CEnv& cenv) { return NULL; } void ACall::lift(CEnv& cenv) { AFn* c = cenv.tenv.resolve(at(0))->to(); AType argsT(loc, NULL); // Lift arguments for (size_t i = 1; i < size(); ++i) { at(i)->lift(cenv); argsT.push_back(cenv.type(at(i))); } if (!c) return; // Primitive if (c->prot()->size() < size() - 1) throw Error(loc, (format("too many arguments to function `%1%'") % at(0)->str()).str()); if (c->prot()->size() > size() - 1) throw Error(loc, (format("too few arguments to function `%1%'") % at(0)->str()).str()); c->liftCall(cenv, argsT); // Lift called closure } CValue ACall::compile(CEnv& cenv) { AFn* c = cenv.tenv.resolve(at(0))->to(); if (!c) return NULL; // Primitive AType protT(loc, NULL); vector types; for (size_t i = 1; i < size(); ++i) { protT.push_back(cenv.type(at(i))); types.push_back(llType(cenv.type(at(i)))); } TEnv::GenericTypes::const_iterator gt = cenv.tenv.genericTypes.find(c); assert(gt != cenv.tenv.genericTypes.end()); AType fnT(loc, cenv.penv.sym("Fn"), &protT, cenv.type(this), 0); Function* f = (Function*)c->impls.find(&fnT); THROW_IF(!f, loc, (format("callee failed to compile for type %1%") % fnT.str()).str()); vector params(size() - 1); for (size_t i = 0; i < types.size(); ++i) params[i] = llVal(cenv.compile(at(i+1))); return llEngine(cenv)->builder.CreateCall(f, params.begin(), params.end()); } void ADef::lift(CEnv& cenv) { // Define stub first for recursion cenv.def(sym(), at(2), cenv.type(at(2)), NULL); AFn* c = at(2)->to(); if (c) c->name = sym()->str(); at(2)->lift(cenv); } CValue ADef::compile(CEnv& cenv) { // Define stub first for recursion cenv.def(sym(), at(2), cenv.type(at(2)), NULL); CValue val = cenv.compile(at(size() - 1)); cenv.vals.def(sym(), val); return val; } CValue AIf::compile(CEnv& cenv) { typedef vector< pair > Branches; Function* parent = llEngine(cenv)->builder.GetInsertBlock()->getParent(); BasicBlock* mergeBB = BasicBlock::Create("endif"); BasicBlock* nextBB = NULL; Branches branches; for (size_t i = 1; i < size() - 1; i += 2) { Value* condV = llVal(cenv.compile(at(i))); BasicBlock* thenBB = BasicBlock::Create((format("then%1%") % ((i+1)/2)).str()); nextBB = BasicBlock::Create((format("else%1%") % ((i+1)/2)).str()); llEngine(cenv)->builder.CreateCondBr(condV, thenBB, nextBB); // Emit then block for this condition parent->getBasicBlockList().push_back(thenBB); llEngine(cenv)->builder.SetInsertPoint(thenBB); Value* thenV = llVal(cenv.compile(at(i+1))); llEngine(cenv)->builder.CreateBr(mergeBB); branches.push_back(make_pair(thenV, llEngine(cenv)->builder.GetInsertBlock())); parent->getBasicBlockList().push_back(nextBB); llEngine(cenv)->builder.SetInsertPoint(nextBB); } // Emit final else block llEngine(cenv)->builder.SetInsertPoint(nextBB); Value* elseV = llVal(cenv.compile(at(size() - 1))); llEngine(cenv)->builder.CreateBr(mergeBB); branches.push_back(make_pair(elseV, llEngine(cenv)->builder.GetInsertBlock())); // Emit merge block (Phi node) parent->getBasicBlockList().push_back(mergeBB); llEngine(cenv)->builder.SetInsertPoint(mergeBB); PHINode* pn = llEngine(cenv)->builder.CreatePHI(llType(cenv.type(this)), "ifval"); FOREACH(Branches::iterator, i, branches) pn->addIncoming(i->first, i->second); return pn; } CValue APrimitive::compile(CEnv& cenv) { Value* a = llVal(cenv.compile(at(1))); Value* b = llVal(cenv.compile(at(2))); bool isFloat = cenv.type(at(1))->str() == "Float"; const string n = at(0)->to()->str(); // Binary arithmetic operations Instruction::BinaryOps op = (Instruction::BinaryOps)0; if (n == "+") op = Instruction::Add; if (n == "-") op = Instruction::Sub; if (n == "*") op = Instruction::Mul; if (n == "and") op = Instruction::And; if (n == "or") op = Instruction::Or; if (n == "xor") op = Instruction::Xor; if (n == "/") op = isFloat ? Instruction::FDiv : Instruction::SDiv; if (n == "%") op = isFloat ? Instruction::FRem : Instruction::SRem; if (op != 0) { Value* val = llEngine(cenv)->builder.CreateBinOp(op, a, b); for (size_t i = 3; i < size(); ++i) val = llEngine(cenv)->builder.CreateBinOp(op, val, llVal(cenv.compile(at(i)))); return val; } // Comparison operations CmpInst::Predicate pred = (CmpInst::Predicate)0; if (n == "=") pred = isFloat ? CmpInst::FCMP_OEQ : CmpInst::ICMP_EQ ; if (n == "!=") pred = isFloat ? CmpInst::FCMP_ONE : CmpInst::ICMP_NE ; if (n == ">") pred = isFloat ? CmpInst::FCMP_OGT : CmpInst::ICMP_SGT; if (n == ">=") pred = isFloat ? CmpInst::FCMP_OGE : CmpInst::ICMP_SGE; if (n == "<") pred = isFloat ? CmpInst::FCMP_OLT : CmpInst::ICMP_SLT; if (n == "<=") pred = isFloat ? CmpInst::FCMP_OLE : CmpInst::ICMP_SLE; if (pred != 0) { if (isFloat) return llEngine(cenv)->builder.CreateFCmp(pred, a, b); else return llEngine(cenv)->builder.CreateICmp(pred, a, b); } throw Error(loc, "unknown primitive"); }