/* Tuplr: A programming language * Copyright (C) 2008-2009 David Robillard * * Tuplr is free software: you can redistribute it and/or modify it under * the terms of the GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * Tuplr is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General * Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with Tuplr. If not, see . */ #include #include #include #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/DerivedTypes.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/PassManager.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Scalar.h" #include "tuplr.hpp" using namespace llvm; using namespace std; using boost::format; inline Value* LLVal(CValue v) { return static_cast(v); } inline Function* LLFunc(CFunction f) { return static_cast(f); } struct CEngine { CEngine(); Module* module; ExecutionEngine* engine; IRBuilder<> builder; }; /*************************************************************************** * Typing * ***************************************************************************/ const Type* lltype(AType* t) { switch (t->kind) { case AType::VAR: return NULL; case AType::PRIM: if (t->at(0)->str() == "Bool") return Type::Int1Ty; if (t->at(0)->str() == "Int") return Type::Int32Ty; if (t->at(0)->str() == "Float") return Type::FloatTy; throw Error(string("Unknown primitive type `") + t->str() + "'"); case AType::EXPR: if (t->at(0)->str() == "Pair") { vector types; for (size_t i = 1; i < t->size(); ++i) types.push_back(lltype(dynamic_cast(t->at(i)))); return PointerType::get(StructType::get(types, false), 0); } else { throw Error(string("Unknown composite type `") + t->str() + "'"); } } return NULL; // not reached } /*************************************************************************** * Code Generation * ***************************************************************************/ // Compile-Time Environment CEngine::CEngine() : module(new Module("tuplr")) , engine(ExecutionEngine::create(module)) { } struct CEnvPimpl { CEnvPimpl(CEngine& engine) : module(engine.module), emp(module), opt(&emp) { // Set up the optimizer pipeline: const TargetData* target = engine.engine->getTargetData(); opt.add(new TargetData(*target)); // Register target arch opt.add(createInstructionCombiningPass()); // Simple optimizations opt.add(createReassociatePass()); // Reassociate expressions opt.add(createGVNPass()); // Eliminate Common Subexpressions opt.add(createCFGSimplificationPass()); // Simplify control flow } Module* module; ExistingModuleProvider emp; FunctionPassManager opt; Function* alloc; }; CEnv::CEnv(PEnv& p, TEnv& t, CEngine& eng) : engine(eng), penv(p), tenv(t), symID(0), _pimpl(new CEnvPimpl(eng)) { } CEnv::~CEnv() { delete _pimpl; } CValue CEnv::compile(AST* obj) { CValue* v = vals.ref(obj); return (v) ? *v : vals.def(obj, obj->compile(*this)); } void CEnv::optimise(CFunction f) { verifyFunction(*static_cast(f)); _pimpl->opt.run(*static_cast(f)); } void CEnv::write(std::ostream& os) { AssemblyAnnotationWriter writer; engine.module->print(os, &writer); } #define LITERAL(CT, NAME, COMPILED) \ template<> CValue \ ASTLiteral::compile(CEnv& cenv) { return (COMPILED); } \ template<> void \ ASTLiteral::constrain(TEnv& tenv) const { tenv.constrain(this, tenv.named(NAME)); } /// Literal template instantiations LITERAL(int32_t, "Int", ConstantInt::get(Type::Int32Ty, val, true)) LITERAL(float, "Float", ConstantFP::get(Type::FloatTy, val)) LITERAL(bool, "Bool", ConstantInt::get(Type::Int1Ty, val, false)) static Function* compileFunction(CEnv& cenv, const std::string& name, const Type* retT, const ASTTuple& prot, const vector argNames=vector()) { Function::LinkageTypes linkage = Function::ExternalLinkage; vector cprot; for (size_t i = 0; i < prot.size(); ++i) { AType* at = cenv.tenv.type(prot.at(i)); if (!lltype(at)) throw Error("function parameter is untyped"); cprot.push_back(lltype(at)); } if (!retT) throw Error("function return is untyped"); FunctionType* fT = FunctionType::get(static_cast(retT), cprot, false); Function* f = Function::Create(fT, linkage, name, cenv.engine.module); if (f->getName() != name) { f->eraseFromParent(); throw Error("function redefined"); } // Set argument names in generated code Function::arg_iterator a = f->arg_begin(); if (!argNames.empty()) for (size_t i = 0; i != prot.size(); ++a, ++i) a->setName(argNames.at(i)); else for (size_t i = 0; i != prot.size(); ++a, ++i) a->setName(prot.at(i)->str()); BasicBlock* bb = BasicBlock::Create("entry", f); cenv.engine.builder.SetInsertPoint(bb); return f; } /*************************************************************************** * AST Code Generation * ***************************************************************************/ void ASTSymbol::lift(CEnv& cenv) { if (!cenv.code.ref(this)) throw Error((string("undefined symbol `") + cppstr + "'").c_str(), loc); } CValue ASTSymbol::compile(CEnv& cenv) { return cenv.compile(*cenv.code.ref(this)); } void ASTClosure::lift(CEnv& cenv) { AType* type = cenv.tenv.type(this); if (!type->concrete() || funcs.find(type)) return; cenv.push(); // Write function declaration string name = this->name == "" ? cenv.gensym("_fn") : this->name; Function* f = compileFunction(cenv, name, lltype(cenv.tenv.type(at(2))), *prot()); // Bind argument values in CEnv vector args; const_iterator p = prot()->begin(); for (Function::arg_iterator a = f->arg_begin(); a != f->arg_end(); ++a, ++p) cenv.vals.def(dynamic_cast(*p), &*a); // Write function body try { cenv.precompile(this, f); // Define our value first for recursion CValue retVal = cenv.compile(at(2)); cenv.engine.builder.CreateRet(LLVal(retVal)); // Finish function cenv.optimise(LLFunc(f)); funcs.push_back(make_pair(type, f)); } catch (Error& e) { f->eraseFromParent(); // Error reading body, remove function throw e; } cenv.pop(); } CValue ASTClosure::compile(CEnv& cenv) { return funcs.find(cenv.tenv.type(this)); } void ASTCall::lift(CEnv& cenv) { ASTClosure* c = dynamic_cast(at(0)); if (!c) { AST** val = cenv.code.ref(at(0)); c = (val) ? dynamic_cast(*val) : c; } // Lift arguments for (size_t i = 1; i < size(); ++i) at(i)->lift(cenv); if (!c) return; // Extend environment with bound and typed parameters cenv.push(); if (c->prot()->size() < size() - 1) throw Error((format("too many arguments to function `%1%'") % at(0)->str()).str(), exp.loc); if (c->prot()->size() > size() - 1) throw Error((format("too few arguments to function `%1%'") % at(0)->str()).str(), exp.loc); for (size_t i = 1; i < size(); ++i) cenv.code.def(c->prot()->at(i-1), at(i)); c->lift(cenv); // Lift called closure cenv.pop(); // Restore environment } CValue ASTCall::compile(CEnv& cenv) { ASTClosure* c = dynamic_cast(at(0)); if (!c) { AST** val = cenv.code.ref(at(0)); c = (val) ? dynamic_cast(*val) : c; } assert(c); Function* f = dynamic_cast(LLVal(cenv.compile(c))); if (!f) throw Error("callee failed to compile", exp.loc); vector params(size() - 1); for (size_t i = 1; i < size(); ++i) params[i-1] = LLVal(cenv.compile(at(i))); return cenv.engine.builder.CreateCall(f, params.begin(), params.end(), "calltmp"); } void ASTDefinition::lift(CEnv& cenv) { if (cenv.code.ref((ASTSymbol*)at(1))) throw Error(string("`") + at(1)->str() + "' redefined", exp.loc); cenv.code.def((ASTSymbol*)at(1), at(2)); // Define first for recursion at(2)->lift(cenv); } CValue ASTDefinition::compile(CEnv& cenv) { return cenv.compile(at(2)); } CValue ASTIf::compile(CEnv& cenv) { typedef vector< pair > Branches; Function* parent = cenv.engine.builder.GetInsertBlock()->getParent(); BasicBlock* mergeBB = BasicBlock::Create("endif"); BasicBlock* nextBB = NULL; Branches branches; for (size_t i = 1; i < size() - 1; i += 2) { Value* condV = LLVal(cenv.compile(at(i))); BasicBlock* thenBB = BasicBlock::Create((format("then%1%") % ((i+1)/2)).str()); nextBB = BasicBlock::Create((format("else%1%") % ((i+1)/2)).str()); cenv.engine.builder.CreateCondBr(condV, thenBB, nextBB); // Emit then block for this condition parent->getBasicBlockList().push_back(thenBB); cenv.engine.builder.SetInsertPoint(thenBB); Value* thenV = LLVal(cenv.compile(at(i+1))); cenv.engine.builder.CreateBr(mergeBB); branches.push_back(make_pair(thenV, cenv.engine.builder.GetInsertBlock())); parent->getBasicBlockList().push_back(nextBB); cenv.engine.builder.SetInsertPoint(nextBB); } // Emit final else block cenv.engine.builder.SetInsertPoint(nextBB); Value* elseV = LLVal(cenv.compile(at(size() - 1))); cenv.engine.builder.CreateBr(mergeBB); branches.push_back(make_pair(elseV, cenv.engine.builder.GetInsertBlock())); // Emit merge block (Phi node) parent->getBasicBlockList().push_back(mergeBB); cenv.engine.builder.SetInsertPoint(mergeBB); PHINode* pn = cenv.engine.builder.CreatePHI(lltype(cenv.tenv.type(this)), "ifval"); FOREACH(Branches::iterator, i, branches) pn->addIncoming(i->first, i->second); return pn; } CValue ASTPrimitive::compile(CEnv& cenv) { Value* a = LLVal(cenv.compile(at(1))); Value* b = LLVal(cenv.compile(at(2))); bool isInt = cenv.tenv.type(at(1))->str() == "Int"; const string n = dynamic_cast(at(0))->str(); // Binary arithmetic operations Instruction::BinaryOps op = (Instruction::BinaryOps)0; if (n == "+") op = Instruction::Add; if (n == "-") op = Instruction::Sub; if (n == "*") op = Instruction::Mul; if (n == "and") op = Instruction::And; if (n == "or") op = Instruction::Or; if (n == "xor") op = Instruction::Xor; if (n == "/") op = isInt ? Instruction::SDiv : Instruction::FDiv; if (n == "%") op = isInt ? Instruction::SRem : Instruction::FRem; if (op != 0) { Value* val = cenv.engine.builder.CreateBinOp(op, a, b); for (size_t i = 3; i < size(); ++i) val = cenv.engine.builder.CreateBinOp(op, val, LLVal(cenv.compile(at(i)))); return val; } // Comparison operations CmpInst::Predicate pred = (CmpInst::Predicate)0; if (n == "=") pred = isInt ? CmpInst::ICMP_EQ : CmpInst::FCMP_OEQ; if (n == "!=") pred = isInt ? CmpInst::ICMP_NE : CmpInst::FCMP_ONE; if (n == ">") pred = isInt ? CmpInst::ICMP_SGT : CmpInst::FCMP_OGT; if (n == ">=") pred = isInt ? CmpInst::ICMP_SGE : CmpInst::FCMP_OGE; if (n == "<") pred = isInt ? CmpInst::ICMP_SLT : CmpInst::FCMP_OLT; if (n == "<=") pred = isInt ? CmpInst::ICMP_SLE : CmpInst::FCMP_OLE; if (pred != 0) { if (isInt) return cenv.engine.builder.CreateICmp(pred, a, b); else return cenv.engine.builder.CreateFCmp(pred, a, b); } throw Error("Unknown primitive", exp.loc); } AType* ASTConsCall::functionType(CEnv& cenv) { ASTTuple* protTypes = new ASTTuple(cenv.tenv.type(at(1)), cenv.tenv.type(at(2)), NULL); AType* cellType = new AType(ASTTuple(cenv.penv.sym("Pair"), cenv.tenv.type(at(1)), cenv.tenv.type(at(2)), NULL), Cursor()); return new AType(ASTTuple(cenv.penv.sym("Fn"), protTypes, cellType, NULL), loc); } void ASTConsCall::lift(CEnv& cenv) { AType* funcType = functionType(cenv); if (funcs.find(functionType(cenv))) return; ASTCall::lift(cenv); ASTTuple* prot = new ASTTuple(at(1), at(2), NULL); vector types; size_t sz = 0; for (size_t i = 1; i < size(); ++i) { const Type* t = lltype(cenv.tenv.type(at(i))); types.push_back(t); sz += t->getPrimitiveSizeInBits(); } sz = (sz % 8 == 0) ? sz / 8 : sz / 8 + 1; llvm::IRBuilder<>& builder = cenv.engine.builder; StructType* sT = StructType::get(types, false); Type* pT = PointerType::get(sT, 0); // Write function declaration vector argNames; argNames.push_back("car"); argNames.push_back("cdr"); Function* func = compileFunction(cenv, cenv.gensym("cons"), pT, *prot, argNames); Value* mem = builder.CreateCall(LLVal(cenv.alloc), ConstantInt::get(Type::Int32Ty, sz), "mem"); Value* cell = builder.CreateBitCast(mem, pT, "cell"); Value* s = builder.CreateGEP(cell, ConstantInt::get(Type::Int32Ty, 0), "pair"); Value* carP = builder.CreateStructGEP(s, 0, "car"); Value* cdrP = builder.CreateStructGEP(s, 1, "cdr"); Function::arg_iterator ai = func->arg_begin(); Value& carArg = *ai++; Value& cdrArg = *ai++; builder.CreateStore(&carArg, carP); builder.CreateStore(&cdrArg, cdrP); builder.CreateRet(cell); cenv.optimise(func); funcs.push_back(make_pair(funcType, func)); } CValue ASTConsCall::compile(CEnv& cenv) { vector params(size() - 1); for (size_t i = 1; i < size(); ++i) params[i-1] = LLVal(cenv.compile(at(i))); return cenv.engine.builder.CreateCall(LLFunc(funcs.find(functionType(cenv))), params.begin(), params.end()); } CValue ASTCarCall::compile(CEnv& cenv) { AST** arg = cenv.code.ref(at(1)); Value* sP = LLVal(arg ? (*arg)->compile(cenv) : at(1)->compile(cenv)); Value* s = cenv.engine.builder.CreateGEP(sP, ConstantInt::get(Type::Int32Ty, 0), "pair"); Value* carP = cenv.engine.builder.CreateStructGEP(s, 0, "car"); return cenv.engine.builder.CreateLoad(carP); } CValue ASTCdrCall::compile(CEnv& cenv) { AST** arg = cenv.code.ref(at(1)); Value* sP = LLVal(arg ? (*arg)->compile(cenv) : at(1)->compile(cenv)); Value* s = cenv.engine.builder.CreateGEP(sP, ConstantInt::get(Type::Int32Ty, 0), "pair"); Value* cdrP = cenv.engine.builder.CreateStructGEP(s, 1, "cdr"); return cenv.engine.builder.CreateLoad(cdrP); } /*************************************************************************** * EVAL/REPL * ***************************************************************************/ const string call(AType* retT, void* fp) { std::stringstream ss; if (lltype(retT) == Type::Int32Ty) ss << ((int32_t (*)())fp)(); else if (lltype(retT) == Type::FloatTy) ss << ((float (*)())fp)(); else if (lltype(retT) == Type::Int1Ty) ss << ((bool (*)())fp)(); else ss << ((void* (*)())fp)(); return ss.str(); } int eval(CEnv& cenv, const string& name, istream& is) { AST* result = NULL; AType* resultType = NULL; list< pair > exprs; Cursor cursor(name); try { while (true) { SExp exp = readExpression(cursor, is); if (exp.type == SExp::LIST && exp.list.empty()) break; result = parseExpression(cenv.penv, exp); // Parse input result->constrain(cenv.tenv); // Constrain types cenv.tenv.solve(); // Solve and apply type constraints resultType = cenv.tenv.type(result); result->lift(cenv); // Lift functions exprs.push_back(make_pair(exp, result)); } if (!resultType || resultType->var()) throw Error("body is undefined/untyped", cursor); const Type* ctype = lltype(resultType); if (!ctype) throw Error("body has non-compilable type", cursor); // Create function for top-level of program Function* f = compileFunction(cenv, "main", ctype, ASTTuple()); // Compile all expressions into it Value* val = NULL; for (list< pair >::const_iterator i = exprs.begin(); i != exprs.end(); ++i) val = LLVal(cenv.compile(i->second)); // Finish function cenv.engine.builder.CreateRet(val); cenv.optimise(f); out << call(resultType, cenv.engine.engine->getPointerToFunction(f)) << " : " << resultType->str() << endl; } catch (Error& e) { err << e.what() << endl; return 1; } return 0; } int repl(CEnv& cenv) { while (1) { out << "() "; out.flush(); Cursor cursor("(stdin)"); try { SExp exp = readExpression(cursor, std::cin); if (exp.type == SExp::LIST && exp.list.empty()) break; AST* body = parseExpression(cenv.penv, exp); // Parse input body->constrain(cenv.tenv); // Constrain types cenv.tenv.solve(); // Solve and apply type constraints AType* bodyT = cenv.tenv.type(body); if (!bodyT) throw Error("call to untyped body", cursor); body->lift(cenv); if (lltype(bodyT)) { // Create anonymous function to insert code into Function* f = compileFunction(cenv, cenv.gensym("_repl"), lltype(bodyT), ASTTuple()); try { Value* retVal = LLVal(cenv.compile(body)); cenv.engine.builder.CreateRet(retVal); // Finish function cenv.optimise(f); } catch (Error& e) { f->eraseFromParent(); // Error reading body, remove function throw e; } out << call(bodyT, cenv.engine.engine->getPointerToFunction(f)); } else { out << "; " << cenv.compile(body); } out << " : " << cenv.tenv.type(body)->str() << endl; } catch (Error& e) { err << e.what() << endl; } } return 0; } CEnv* newCenv(PEnv& penv, TEnv& tenv) { CEngine* engine = new CEngine(); CEnv* cenv = new CEnv(penv, tenv, *engine); // Host provided allocation primitive prototypes std::vector argsT(1, Type::Int32Ty); FunctionType* funcT = FunctionType::get(PointerType::get(Type::Int8Ty, 0), argsT, false); cenv->alloc = Function::Create(funcT, Function::ExternalLinkage, "malloc", engine->module); return cenv; }