/* Resp: A programming language * Copyright (C) 2008-2009 David Robillard * * Resp is free software: you can redistribute it and/or modify it under * the terms of the GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * Resp is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General * Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with Resp. If not, see . */ /** @file * @brief Interface and type definitions */ #ifndef RESP_HPP #define RESP_HPP #include #include #include #include #include #include #include #include #include #include #include #include #define FOREACH(IT, i, c) for (IT i = (c).begin(); i != (c).end(); ++i) #define FOREACHP(IT, i, c) for (IT i = (c)->begin(); i != (c)->end(); ++i) #define THROW_IF(cond, error, ...) { if (cond) throw Error(error, __VA_ARGS__); } using namespace std; using boost::format; /*************************************************************************** * Basic Utility Classes * ***************************************************************************/ /// Location in textual code struct Cursor { Cursor(const string& n="", unsigned l=1, unsigned c=0) : name(n), line(l), col(c) {} operator bool() const { return !(line == 1 && col == 0); } string str() const { return (format("%1%:%2%:%3%") % name % line % col).str(); } string name; unsigned line; unsigned col; }; /// Compilation error struct Error { Error(Cursor c, const string& m) : loc(c), msg(m) {} const string what() const { return (loc ? loc.str() + ": " : "") + "error: " + msg; } const Cursor loc; const string msg; }; /// Generic Lexical Environment template struct Env : public list< vector< pair > > { typedef vector< pair > Frame; Env() : list(1) {} virtual ~Env() {} virtual void push(Frame f=Frame()) { list::push_front(f); } virtual void pop() { list::pop_front(); } const V& def(const K& k, const V& v) { for (typename Frame::iterator b = this->begin()->begin(); b != this->begin()->end(); ++b) if (b->first == k) return (b->second = v); this->front().push_back(make_pair(k, v)); return v; } V* ref(const K& key) { for (typename Env::iterator f = this->begin(); f != this->end(); ++f) for (typename Frame::iterator b = f->begin(); b != f->end(); ++b) if (b->first == key) return &b->second; return NULL; } bool contains(const Frame& frame, const K& key) const { for (typename Frame::const_iterator b = frame.begin(); b != frame.end(); ++b) if (b->first == key) return true; return false; } bool topLevel(const K& key) const { return contains(this->back(), key); } bool innermost(const K& key) const { return contains(this->front(), key); } }; template ostream& operator<<(ostream& out, const Env& env) { out << "(Env" << endl; for (typename Env::const_reverse_iterator f = env.rbegin(); f != env.rend(); ++f) { out << " (" << endl; for (typename Env::Frame::const_iterator b = f->begin(); b != f->end(); ++b) cout << " " << b->first << " " << b->second << endl; out << " )" << endl; } out << ")" << endl; return out; } /*************************************************************************** * Lexer: Text (istream) -> S-Expressions (SExp) * ***************************************************************************/ struct AST; AST* readExpression(Cursor& cur, std::istream& in); /*************************************************************************** * Backend Types * ***************************************************************************/ typedef void* CVal; ///< Compiled value (opaque) typedef void* CFunc; ///< Compiled function (opaque) /*************************************************************************** * Garbage Collection * ***************************************************************************/ struct Object; /// Type tag for an AST node (must be even and > 1 since LSb is used as mark) enum Tag { T_UNKNOWN = 2, T_BOOL = 4, T_FLOAT = 6, T_INT32 = 8, T_LEXEME = 10, T_STRING = 12, T_SYMBOL = 14, T_TUPLE = 16, T_TYPE = 18 }; /// Garbage collector struct GC { typedef std::list Roots; typedef std::list Heap; GC(size_t pool_size); ~GC(); void* alloc(size_t size); void collect(const Roots& roots); void addRoot(const Object* obj) { assert(obj); _roots.push_back(obj); } void lock() { _roots.insert(_roots.end(), _heap.begin(), _heap.end()); } const Roots& roots() const { return _roots; } private: void* _pool; Heap _heap; Roots _roots; }; /// Garbage collected object (including AST and runtime data) struct Object { struct Header { uint32_t tag; ///< Least significant bit is mark }; inline Tag tag() const { return (Tag)((header()->tag >> 1) << 1); } inline void tag(Tag t) { header()->tag = (t | (marked() ? 1 : 0)); } inline bool marked() const { return (header()->tag & 1); } inline void mark(bool b) const { if (b) header()->tag |= 1; else header()->tag = ((header()->tag >> 1) << 1); } static void* operator new(size_t size) { return pool.alloc(size); } static void operator delete(void* ptr) {} // Memory used with placement new MUST always be allocated with pool.alloc! static void* operator new(size_t size, void* ptr) { return ptr; } static GC pool; private: /// Always allocated with pool.alloc, so this - sizeof(Header) is a valid Header*. inline Header* header() const { return (Header*)((char*)this - sizeof(Header)); } }; /*************************************************************************** * Abstract Syntax Tree * ***************************************************************************/ struct TEnv; ///< Type-Time Environment struct CEnv; ///< Compile-Time Environment struct ATuple; struct ASymbol; struct AType; struct ALexeme; class AST; extern ostream& operator<<(ostream& out, const AST* ast); /// Base class for all AST nodes struct AST : public Object { AST(Tag t, Cursor c=Cursor()) : loc(c) { this->tag(t); } bool operator==(const AST& o) const; string str() const { ostringstream ss; ss << this; return ss.str(); } const ATuple* as_tuple() const { assert(tag() == T_TUPLE || tag() == T_TYPE); return (ATuple*)this; } const ATuple* to_tuple() const { if (tag() == T_TUPLE || tag() == T_TYPE) return (const ATuple*)this; return NULL; } template T* as_a(Tag t) const { assert(tag() == t); return (T*)this; } template T* to_a(Tag t) const { if (tag() == t) return (T*)this; return NULL; } const ASymbol* as_symbol() const { return as_a(T_SYMBOL); } const ASymbol* to_symbol() const { return to_a(T_SYMBOL); } const ALexeme* to_lexeme() const { return to_a(T_LEXEME); } const AType* as_type() const { return as_a(T_TYPE); } const AType* to_type() const { return to_a(T_TYPE); } Cursor loc; }; template static T* tup(Cursor c, AST* ast, ...) { va_list args; va_start(args, ast); T* ret = new T(c, ast, args); va_end(args); return ret; } /// Literal value template struct ALiteral : public AST { ALiteral(Tag tag, T v, Cursor c) : AST(tag, c), val(v) {} const T val; }; /// Lexeme (any atom in the CST, e.g. "a", "3.4", ""hello"", etc.) struct ALexeme : public AST { ALexeme(Cursor c, const string& s) : AST(T_LEXEME, c), cppstr(s) {} const string cppstr; }; /// String, e.g. ""a"" struct AString : public AST { AString(Cursor c, const string& s) : AST(T_STRING, c), cppstr(s) {} const string cppstr; }; /// Symbol, e.g. "a" struct ASymbol : public AST { const string cppstr; private: friend class PEnv; ASymbol(const string& s, Cursor c) : AST(T_SYMBOL, c), cppstr(s) {} }; /// Tuple (heterogeneous sequence of fixed length), e.g. "(a b c)" struct ATuple : public AST { ATuple(Cursor c) : AST(T_TUPLE, c), _len(0), _vec(0) {} ATuple(const ATuple& exp) : AST(T_TUPLE, exp.loc), _len(exp._len) { _vec = (const AST**)malloc(sizeof(AST*) * _len); memcpy(_vec, exp._vec, sizeof(AST*) * _len); } ATuple(const AST* first, const AST* rest, Cursor c=Cursor()) : AST(T_TUPLE, c), _len(2) { _vec = (const AST**)malloc(sizeof(AST*) * _len); _vec[0] = first; _vec[1] = rest; } ATuple(Cursor c, AST* ast, va_list args) : AST(T_TUPLE, c), _len(0), _vec(0) { if (!ast) return; _len = 2; _vec = (const AST**)malloc(sizeof(AST*) * _len); _vec[0] = ast; _vec[1] = NULL; ATuple* tail = this; for (AST* a = va_arg(args, AST*); a; a = va_arg(args, AST*)) { ATuple* tup = new ATuple(a, NULL); tail->last(tup); tail = tup; } } const AST* head() const { assert(_len > 0); return _vec[0]; } const AST* last() const { return _vec[_len - 1]; } bool empty() const { return _len == 0; } size_t tup_len() const { return _len; } size_t list_len() const { size_t ret = 0; for (const_iterator i = begin(); i != end(); ++i, ++ret) {} return ret; } const AST* list_last() const { for (const_iterator i = begin(); i != end();) { const_iterator next = i; ++next; if (next == end()) return *i; i = next; } return NULL; } void last(AST* ast) { _vec[_len - 1] = ast; } struct const_iterator { const_iterator(const ATuple* n) : node(n) { assert(!n || n->tup_len() == 0 || n->tup_len() == 2); if (!n || n->tup_len() == 0) node = NULL; } inline void increment() { if (node->last()) node = node->last()->as_tuple(); else node = NULL; } inline const_iterator& operator++() { assert(node); increment(); return *this; } inline const_iterator operator++(int) { assert(node); const const_iterator ret(node); increment(); return ret; } inline bool operator==(const const_iterator& i) const { return node == i.node || (!node && i.node->tup_len() == 0); } inline bool operator!=(const const_iterator& i) const { return !operator==(i); } const AST* operator*() { return node->head(); } const ATuple* node; }; const_iterator begin() const { assert(_len == 0 || _len == 2); return const_iterator(this); } const_iterator end() const { return const_iterator(NULL); } const_iterator iter_at(unsigned index) const { const_iterator i = begin(); for (unsigned idx = 0; idx != index; ++i, ++idx) { assert(i != end()); } return i; } const AST* list_ref(unsigned index) const { return *iter_at(index); } const ATuple* prot() const { return list_ref(1)->as_tuple(); } private: friend class GC; size_t _len; const AST** _vec; }; static bool list_contains(const ATuple* head, const AST* child) { if (*head == *child) return true; FOREACHP(ATuple::const_iterator, p, head) { if (**p == *child) return true; const ATuple* tup = (*p)->to_tuple(); if (tup && list_contains(tup, child)) return true; } return false; } /// Type Expression, e.g. "Int", "(Fn (Int Int) Float)" struct AType : public ATuple { enum Kind { VAR, NAME, PRIM, EXPR, DOTS }; AType(const ASymbol* s, Kind k) : ATuple(s, NULL, s->loc), kind(k), id(0) { tag(T_TYPE); } AType(Cursor c, unsigned i) : ATuple(c), kind(VAR), id(i) { tag(T_TYPE); } AType(Cursor c, Kind k=EXPR) : ATuple(c), kind(k), id(0) { tag(T_TYPE); } AType(Cursor c, AST* ast, va_list args) : ATuple(c, ast, args), kind(EXPR), id(0) { tag(T_TYPE); } AType(const AST* first, const AST* rest, Cursor c) : ATuple(first, rest, c), kind(EXPR), id(0) { tag(T_TYPE); } AType(const AType& copy) : ATuple(copy), kind(copy.kind), id(copy.id) { tag(T_TYPE); } AType(const AType& copy, Cursor cur) : ATuple(copy), kind(copy.kind), id(copy.id) { tag(T_TYPE); loc = cur; } bool concrete() const { switch (kind) { case VAR: return false; case NAME: return false; case PRIM: return head()->str() != "Nothing"; case EXPR: FOREACHP(const_iterator, t, this) { const AType* kid = (*t)->to_type(); if (kid && !kid->concrete()) return false; } case DOTS: return false; } return true; } Kind kind; unsigned id; }; // Utility class for easily building lists from left to right template // ConsType, ElementType struct List { List(CT* h=0) : head(h), tail(0) {} List(Cursor c, ET* ast, ...) : head(0), tail(0) { push_back(ast); assert(*head->begin() == ast); head->loc = c; va_list args; va_start(args, ast); for (ET* a = va_arg(args, ET*); a; a = va_arg(args, ET*)) push_back(a); va_end(args); } void push_back(ET* ast) { if (!head) { head = new CT(ast, NULL, Cursor()); } else if (!tail) { CT* node = new CT(ast, NULL, Cursor()); head->last(node); tail = node; } else { CT* node = new CT(ast, NULL, Cursor()); tail->last(node); tail = node; } } void push_front(ET* ast) { head = new CT(ast, head, Cursor()); } operator CT*() const { return head; } CT* head; CT* tail; }; typedef List TList; inline bool list_equals(const ATuple* lhs, const ATuple* rhs) { if (!rhs || rhs->tup_len() != lhs->tup_len()) return false; ATuple::const_iterator l = lhs->begin(); FOREACHP(ATuple::const_iterator, r, rhs) if (!(*(*l++) == *(*r))) return false; return true; } template inline bool literal_equals(const ALiteral* lhs, const ALiteral* rhs) { return lhs && rhs && lhs->val == rhs->val; } inline bool AST::operator==(const AST& rhs) const { const Tag tag = this->tag(); if (tag != rhs.tag()) return false; switch (tag) { case T_BOOL: return literal_equals((const ALiteral*)this, (const ALiteral*)&rhs); case T_FLOAT: return literal_equals((const ALiteral*)this, (const ALiteral*)&rhs); case T_INT32: return literal_equals((const ALiteral*)this, (const ALiteral*)&rhs); case T_TUPLE: { const ATuple* me = this->as_tuple(); const ATuple* rt = rhs.to_tuple(); return list_equals(me, rt); } case T_TYPE: { const AType* me = this->as_type(); const AType* rt = rhs.to_type(); if (!rt || me->kind != rt->kind) { assert(str() != rt->str()); return false; } else switch (me->kind) { case AType::VAR: return me->id == rt->id; case AType::NAME: return me->head()->str() == rt->head()->str(); case AType::PRIM: return me->head()->str() == rt->head()->str(); case AType::EXPR: return list_equals(me, rt); case AType::DOTS: return true; } return false; // never reached } case T_UNKNOWN: case T_LEXEME: case T_STRING: case T_SYMBOL: return this == &rhs; } return false; } /*************************************************************************** * Parser: S-Expressions (SExp) -> AST Nodes (AST) * ***************************************************************************/ /// Parse Time Environment (really just a symbol table) struct PEnv : private map { PEnv() : symID(0) {} typedef const AST* (*PF)(PEnv&, const AST*, void*); ///< Parse Function struct Handler { Handler(PF f, void* a=0) : func(f), arg(a) {} PF func; void* arg; }; map handlers; ///< List parse functions void reg(const string& s, const Handler& h) { handlers.insert(make_pair(sym(s)->str(), h)); } const Handler* handler(const string& s) const { map::const_iterator i = handlers.find(s); return (i != handlers.end()) ? &i->second : NULL; } string gensymstr(const char* s="_") { return (format("%s_%d") % s % symID++).str(); } ASymbol* gensym(const char* s="_") { return sym(gensymstr(s)); } ASymbol* sym(const string& s, Cursor c=Cursor()) { const const_iterator i = find(s); if (i != end()) { return i->second; } else { ASymbol* sym = new ASymbol(s, c); insert(make_pair(s, sym)); return sym; } } const AST* parse(const AST* exp); typedef std::set Primitives; Primitives primitives; unsigned symID; }; /*************************************************************************** * Typing * ***************************************************************************/ /// Type constraint struct Constraint : public pair { Constraint(const AType* a, const AType* b) : pair(a, b) {} }; /// Type substitution struct Subst : public list { Subst(const AType* s=0, const AType* t=0) { if (s && t) { assert(s != t); push_back(Constraint(s, t)); } } static Subst compose(const Subst& delta, const Subst& gamma); void add(const AType* from, const AType* to) { push_back(Constraint(from, to)); } const_iterator find(const AType* t) const { for (const_iterator j = begin(); j != end(); ++j) if (*j->first == *t) return j; return end(); } const AType* apply(const AType* in) const { if (in->kind == AType::EXPR) { TList out; for (ATuple::const_iterator i = in->begin(); i != in->end(); ++i) out.push_back(apply((*i)->as_type())); out.head->loc = in->loc; return out.head; } else { const_iterator i = find(in); if (i != end()) { const AType* out = i->second->as_type(); if (out->kind == AType::EXPR && !out->concrete()) out = apply(out->as_type()); return out; } else { return new AType(*in); } } } bool contains(const AType* type) const { if (find(type) != end()) return true; FOREACHP(const_iterator, j, this) if (*j->second == *type || list_contains(j->second, type)) return true; return false; } }; inline ostream& operator<<(ostream& out, const Subst& s) { for (Subst::const_iterator i = s.begin(); i != s.end(); ++i) out << i->first << " => " << i->second << endl; return out; } /// Type constraint set struct Constraints : public list { Constraints() : list() {} Constraints(const Subst& subst) : list() { FOREACH(Subst::const_iterator, i, subst) push_back(Constraint(new AType(*i->first), new AType(*i->second))); } Constraints(const_iterator begin, const_iterator end) : list(begin, end) {} void constrain(TEnv& tenv, const AST* o, const AType* t); Constraints& replace(const AType* s, const AType* t); }; inline ostream& operator<<(ostream& out, const Constraints& c) { for (Constraints::const_iterator i = c.begin(); i != c.end(); ++i) out << i->first << " <= " << i->second << endl; return out; } /// Type-Time Environment struct TEnv : public Env { TEnv(PEnv& p) : penv(p) , varID(1) , Fn(new AType(penv.sym("Fn"), AType::PRIM)) , Tup(new AType(penv.sym("Tup"), AType::NAME)) , U(new AType(penv.sym("U"), AType::PRIM)) { Object::pool.addRoot(Fn); } const AType* fresh(const ASymbol* sym) { return def(sym, new AType(sym->loc, varID++)); } const AType* var(const AST* ast=0) { if (!ast) return new AType(Cursor(), varID++); assert(!ast->to_type()); Vars::iterator v = vars.find(ast); if (v != vars.end()) return v->second; return (vars[ast] = new AType(ast->loc, varID++)); } const AType* named(const string& name) { return *ref(penv.sym(name)); } static Subst buildSubst(const AType* fnT, const AType& argsT); typedef map Vars; Vars vars; PEnv& penv; unsigned varID; AType* Fn; AType* Tup; AType* U; }; Subst unify(const Constraints& c); /*************************************************************************** * Code Generation * ***************************************************************************/ /// Compiler backend struct Engine { virtual ~Engine() {} typedef const vector ValVec; virtual CFunc startFunction( CEnv& cenv, const std::string& name, const ATuple* args, const AType* type) = 0; virtual void pushFunctionArgs(CEnv& cenv, const ATuple* fn, const AType* type, CFunc f) = 0; virtual void finishFunction(CEnv& cenv, CFunc f, CVal ret) = 0; virtual void eraseFunction(CEnv& cenv, CFunc f) = 0; virtual CVal compileTup(CEnv& cenv, const AType* t, CVal rtti, ValVec& f) = 0; virtual CVal compileDot(CEnv& cenv, CVal tup, int32_t index) = 0; virtual CVal compileLiteral(CEnv& cenv, const AST* lit) = 0; virtual CVal compileString(CEnv& cenv, const char* str) = 0; virtual CVal compileCall(CEnv& cenv, CFunc f, const AType* fT, ValVec& args) = 0; virtual CVal compilePrimitive(CEnv& cenv, const ATuple* prim) = 0; virtual CVal compileIf(CEnv& cenv, const ATuple* aif) = 0; virtual CVal compileMatch(CEnv& cenv, const ATuple* match) = 0; virtual CVal compileGlobal(CEnv& cenv, const AType* t, const string& sym, CVal val) = 0; virtual CVal getGlobal(CEnv& cenv, const string& sym, CVal val) = 0; virtual void writeModule(CEnv& cenv, std::ostream& os) = 0; virtual const string call(CEnv& cenv, CFunc f, const AType* retT) = 0; }; Engine* resp_new_llvm_engine(); Engine* resp_new_c_engine(); /// Compile-Time Environment struct CEnv { CEnv(PEnv& p, TEnv& t, Engine* e, ostream& os=std::cout, ostream& es=std::cerr) : out(os), err(es), penv(p), tenv(t), currentFn(NULL), _engine(e) {} ~CEnv() { Object::pool.collect(GC::Roots()); } typedef Env Vals; Engine* engine() { return _engine; } void push() { code.push(); tenv.push(); vals.push(); } void pop() { code.pop(); tenv.pop(); vals.pop(); } void lock(const AST* ast) { Object::pool.addRoot(ast); if (type(ast)) Object::pool.addRoot(type(ast)); } const AType* type(const AST* ast, const Subst& subst = Subst()) const { const AType* ret = NULL; const ASymbol* sym = ast->to_symbol(); if (sym) { const AType** rec = tenv.ref(sym); if (rec) ret = *rec; } if (!ret) ret = tenv.vars[ast]; if (ret) return tsubst.apply(subst.apply(ret))->to_type(); return NULL; } void def(const ASymbol* sym, const AST* c, const AType* t, CVal v) { code.def(sym, c); tenv.def(sym, t); vals.def(sym, v); } const AST* resolve(const AST* ast) { const ASymbol* sym = ast->to_symbol(); const AST** rec = code.ref(sym); return rec ? *rec : ast; } void setType(AST* ast, const AType* type) { const AType* tvar = tenv.var(); tenv.vars.insert(make_pair(ast, tvar)); tsubst.add(tvar, type); } void setTypeSameAs(const AST* ast, const AST* typedAst) { tenv.vars.insert(make_pair(ast, tenv.vars[typedAst])); } ostream& out; ostream& err; PEnv& penv; TEnv& tenv; Vals vals; Subst tsubst; Env code; typedef map Impls; Impls impls; CFunc findImpl(const ATuple* fn, const AType* type) { Impls::const_iterator i = impls.find(fn); return (i != impls.end()) ? i->second : NULL; } void addImpl(const ATuple* fn, CFunc impl) { impls.insert(make_pair(fn, impl)); } map args; CFunc currentFn; ///< Currently compiling function struct FreeVars : public std::vector { FreeVars(const ATuple* f, const std::string& n) : fn(f), implName(n) {} const ATuple* const fn; const std::string implName; int32_t index(const ASymbol* sym) { const_iterator i = find(begin(), end(), sym); if (i != end()) { return i - begin() + 1; } else { push_back(sym); return size(); } } }; typedef std::stack LiftStack; LiftStack liftStack; typedef map Names; Names names; const std::string name(const ATuple* fn) const { Names::const_iterator i = names.find(fn); return (i != names.end()) ? i->second : ""; } void setName(const ATuple* fn, const std::string& name) { names.insert(make_pair(fn, name)); } private: Engine* _engine; }; /*************************************************************************** * EVAL/REPL/MAIN * ***************************************************************************/ typedef list Code; void pprint(std::ostream& out, const AST* ast, CEnv* cenv, bool types); void initLang(PEnv& penv, TEnv& tenv); int eval(CEnv& cenv, Cursor& cursor, istream& is, bool execute); int repl(CEnv& cenv); void resp_constrain(TEnv& tenv, Constraints& c, const AST* ast) throw(Error); const AST* resp_lift(CEnv& cenv, Code& code, const AST* ast) throw(); CVal resp_compile(CEnv& cenv, const AST* ast) throw(); bool is_form(const AST* ast, const std::string& form); bool is_primitive(const PEnv& penv, const AST* ast); #endif // RESP_HPP