/* Tuplr: A programming language * Copyright (C) 2008-2009 David Robillard * * Tuplr is free software: you can redistribute it and/or modify it under * the terms of the GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * Tuplr is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General * Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with Tuplr. If not, see . */ #ifndef TUPLR_HPP #define TUPLR_HPP #include #include #include #include #include #include #include #include #define FOREACH(IT, i, c) for (IT i = (c).begin(); i != (c).end(); ++i) using namespace std; using boost::format; /*************************************************************************** * Basic Utility Classes * ***************************************************************************/ struct Cursor { Cursor(const string& n="", unsigned l=1, unsigned c=0) : name(n), line(l), col(c) {} operator bool() const { return !(line == 1 && col == 0); } string str() const { return (format("%1%:%2%:%3%") % name % line % col).str(); } string name; unsigned line; unsigned col; }; struct Error { Error(const string& m, Cursor c=Cursor()) : msg(m), loc(c) {} const string what() const { return (loc ? loc.str() + ": " : "") + "error: " + msg; } string msg; Cursor loc; }; struct Log { Log(ostream& o, ostream& e) : out(o), err(e) {} ostream& out; ostream& err; }; template struct Exp { Exp(Cursor c) : type(LIST), loc(c) {} Exp(Cursor c, const Atom& a) : type(ATOM), loc(c), atom(a) {} typedef std::vector< Exp > List; enum { ATOM, LIST } type; Cursor loc; Atom atom; List list; }; /*************************************************************************** * Lexer: Text (istream) -> S-Expressions (SExp) (Prefix S for Syntactic) * ***************************************************************************/ typedef Exp SExp; ///< Textual S-Expression SExp readExpression(Cursor& cur, std::istream& in); /*************************************************************************** * Backend (Prefix C for Compiled) * ***************************************************************************/ typedef void* CValue; ///< Compiled value (opaque) typedef void* CFunction; ///< Compiled function (opaque) struct CEngine; ///< Backend data (opaque) /*************************************************************************** * Abstract Syntax Tree (Prefix A for Abstract) * ***************************************************************************/ struct TEnv; ///< Type-Time Environment struct CEnv; ///< Compile-Time Environment struct AST; extern ostream& operator<<(ostream& out, const AST* ast); /// Base class for all AST nodes struct AST { AST(Cursor c=Cursor()) : loc(c) {} virtual ~AST() {} virtual bool operator==(const AST& o) const = 0; virtual bool contains(const AST* child) const { return false; } virtual void constrain(TEnv& tenv) const {} virtual void lift(CEnv& cenv) {} string str() const { ostringstream ss; ss << this; return ss.str(); } Cursor loc; private: friend class CEnv; virtual CValue compile(CEnv& cenv) = 0; }; /// Literal value template struct ALiteral : public AST { ALiteral(VT v, Cursor c) : AST(c), val(v) {} bool operator==(const AST& rhs) const { const ALiteral* r = dynamic_cast*>(&rhs); return (r && (val == r->val)); } void constrain(TEnv& tenv) const; CValue compile(CEnv& cenv); const VT val; }; /// Symbol, e.g. "a" struct ASymbol : public AST { bool operator==(const AST& rhs) const { return this == &rhs; } void lift(CEnv& cenv); CValue compile(CEnv& cenv); private: friend class PEnv; ASymbol(const string& s, Cursor c) : AST(c), cppstr(s) {} friend ostream& operator<<(ostream&, const AST*); const string cppstr; }; /// Tuple (heterogeneous sequence of fixed length), e.g. "(a b c)" struct ATuple : public AST, public vector { ATuple(const vector& t=vector(), Cursor c=Cursor()) : AST(c), vector(t) {} ATuple(size_t size, Cursor c) : AST(c), vector(size) {} ATuple(Cursor c, AST* ast, ...) : AST(c) { va_list args; va_start(args, ast); push_back(ast); for (AST* a = va_arg(args, AST*); a; a = va_arg(args, AST*)) push_back(a); va_end(args); } bool operator==(const AST& rhs) const { const ATuple* rt = dynamic_cast(&rhs); if (!rt || rt->size() != size()) return false; const_iterator l = begin(); FOREACH(const_iterator, r, *rt) if (!(*(*l++) == *(*r))) return false; return true; } void lift(CEnv& cenv) { FOREACH(iterator, t, *this) (*t)->lift(cenv); } bool contains(AST* child) const { if (*this == *child) return true; FOREACH(const_iterator, p, *this) if (**p == *child || (*p)->contains(child)) return true; return false; } void constrain(TEnv& tenv) const; CValue compile(CEnv& cenv) { throw Error("tuple compiled"); } }; /// Type Expression, e.g. "Int", "(Fn (Int Int) Float)" struct AType : public ATuple { AType(unsigned i, Cursor c=Cursor()) : ATuple(0, c), kind(VAR), id(i) {} AType(ASymbol* s) : ATuple(0, s->loc), kind(PRIM), id(0) { push_back(s); } AType(const ATuple& t, Cursor c) : ATuple(t, c), kind(EXPR), id(0) {} AType(Cursor c, AST* ast, ...) : ATuple(0, c), kind(EXPR), id(0) { va_list args; va_start(args, ast); push_back(ast); for (AST* a = va_arg(args, AST*); a; a = va_arg(args, AST*)) push_back(a); va_end(args); } void constrain(TEnv& tenv) const {} CValue compile(CEnv& cenv) { return NULL; } bool var() const { return kind == VAR; } bool concrete() const { switch (kind) { case VAR: return false; case PRIM: return true; case EXPR: FOREACH(const_iterator, t, *this) { AType* kid = dynamic_cast(*t); if (kid && !kid->concrete()) return false; } } return true; } bool operator==(const AST& rhs) const { const AType* rt = dynamic_cast(&rhs); if (!rt || kind != rt->kind) return false; else switch (kind) { case VAR: return id == rt->id; case PRIM: return at(0)->str() == rt->at(0)->str(); case EXPR: return ATuple::operator==(rhs); } return false; // never reached } enum { VAR, PRIM, EXPR } kind; unsigned id; }; /// Lifted system functions (of various types) for a single Tuplr function struct Funcs : public list< pair > { CFunction find(AType* type) const { for (const_iterator f = begin(); f != end(); ++f) if (*f->first == *type) return f->second; return NULL; } }; /// Closure (first-class function with captured lexical bindings) struct AClosure : public ATuple { AClosure(Cursor c, ASymbol* fn, ATuple* p, AST* b, const string& n="") : ATuple(c, fn, p, b, NULL), name(n) {} bool operator==(const AST& rhs) const { return this == &rhs; } void constrain(TEnv& tenv) const; void lift(CEnv& cenv); CValue compile(CEnv& cenv); ATuple* prot() const { return dynamic_cast(at(1)); } private: Funcs funcs; string name; }; /// Function call/application, e.g. "(func arg1 arg2)" struct ACall : public ATuple { ACall(const SExp& e, const ATuple& t) : ATuple(t, e.loc) {} void constrain(TEnv& tenv) const; void lift(CEnv& cenv); CValue compile(CEnv& cenv); }; /// Definition special form, e.g. "(def x 2)" struct ADefinition : public ACall { ADefinition(const SExp& e, const ATuple& t) : ACall(e, t) {} void constrain(TEnv& tenv) const; void lift(CEnv& cenv); CValue compile(CEnv& cenv); }; /// Conditional special form, e.g. "(if cond thenexp elseexp)" struct AIf : public ACall { AIf(const SExp& e, const ATuple& t) : ACall(e, t) {} void constrain(TEnv& tenv) const; CValue compile(CEnv& cenv); }; /// Primitive (builtin arithmetic function), e.g. "(+ 2 3)" struct APrimitive : public ACall { APrimitive(const SExp& e, const ATuple& t) : ACall(e, t) {} void constrain(TEnv& tenv) const; CValue compile(CEnv& cenv); }; /// Cons special form, e.g. "(cons 1 2)" struct AConsCall : public ACall { AConsCall(const SExp& e, const ATuple& t) : ACall(e, t) {} AType* functionType(CEnv& cenv); void constrain(TEnv& tenv) const; void lift(CEnv& cenv); CValue compile(CEnv& cenv); static Funcs funcs; }; /// Car special form, e.g. "(car p)" struct ACarCall : public ACall { ACarCall(const SExp& e, const ATuple& t) : ACall(e, t) {} void constrain(TEnv& tenv) const; CValue compile(CEnv& cenv); }; /// Cdr special form, e.g. "(cdr p)" struct ACdrCall : public ACall { ACdrCall(const SExp& e, const ATuple& t) : ACall(e, t) {} void constrain(TEnv& tenv) const; CValue compile(CEnv& cenv); }; /*************************************************************************** * Parser: S-Expressions (SExp) -> AST Nodes (AST) (Prefix P for Parsing) * ***************************************************************************/ /// Parse Time Environment (symbol table) struct PEnv : private map { typedef AST* (*PF)(PEnv&, const SExp&, void*); // Parse Function struct Handler { Handler(PF f, void* a=0) : func(f), arg(a) {} PF func; void* arg; }; map aHandlers; ///< Atom parse functions map lHandlers; ///< List parse functions void reg(bool list, const string& s, const Handler& h) { (list ? lHandlers : aHandlers).insert(make_pair(sym(s)->str(), h)); } const Handler* handler(bool list, const string& s) const { const map& handlers = list ? lHandlers : aHandlers; map::const_iterator i = handlers.find(s); return (i != handlers.end()) ? &i->second : NULL; } ASymbol* sym(const string& s, Cursor c=Cursor()) { const const_iterator i = find(s); return ((i != end()) ? i->second : insert(make_pair(s, new ASymbol(s, c))).first->second); } ATuple parseTuple(const SExp& e) { ATuple ret(e.list.size(), e.loc); size_t n = 0; FOREACH(SExp::List::const_iterator, i, e.list) ret[n++] = parse(*i); return ret; } AST* parse(const SExp& exp) { if (exp.type == SExp::LIST) { if (exp.list.empty()) throw Error("call to empty list", exp.loc); if (exp.list.front().type == SExp::ATOM) { const PEnv::Handler* h = handler(true, exp.list.front().atom); if (h) return h->func(*this, exp, h->arg); } return new ACall(exp, parseTuple(exp)); // Parse as regular call } else if (isdigit(exp.atom[0])) { if (exp.atom.find('.') == string::npos) return new ALiteral(strtol(exp.atom.c_str(), NULL, 10), exp.loc); else return new ALiteral(strtod(exp.atom.c_str(), NULL), exp.loc); } else { const PEnv::Handler* h = handler(false, exp.atom); if (h) return h->func(*this, exp, h->arg); } return sym(exp.atom, exp.loc); } }; template inline AST* parseCall(PEnv& penv, const SExp& exp, void* arg) { return new C(exp, penv.parseTuple(exp)); } template inline AST* parseLiteral(PEnv& penv, const SExp& exp, void* arg) { return new ALiteral(*reinterpret_cast(arg), exp.loc); } inline AST* parseFn(PEnv& penv, const SExp& exp, void* arg) { SExp::List::const_iterator a = exp.list.begin(); ++a; return new AClosure(exp.loc, penv.sym("fn"), new ATuple(penv.parseTuple(*a++)), penv.parse(*a++)); } /*************************************************************************** * Generic Lexical Environment * ***************************************************************************/ template struct Env : public list< map > { typedef map Frame; Env() : list(1) {} void push() { list::push_front(Frame()); } void pop() { assert(!this->empty()); list::pop_front(); } const V& def(const K& k, const V& v) { typename Frame::iterator existing = this->front().find(k); if (existing != this->front().end() && existing->second != v) throw Error("redefinition"); return (this->front()[k] = v); } V* ref(const K& name) { typename Frame::iterator s; for (typename Env::iterator i = this->begin(); i != this->end(); ++i) if ((s = i ->find(name)) != i->end()) return &s->second; return 0; } }; /*************************************************************************** * Typing (Prefix T for Type) * ***************************************************************************/ struct TSubst : public map { TSubst(AType* s=0, AType* t=0) { if (s && t) insert(make_pair(s, t)); } }; /// Type-Time Environment struct TEnv : public Env { TEnv(PEnv& p) : penv(p), varID(1) {} struct Constraint : public pair { Constraint(AType* a, AType* b, Cursor c) : pair(a, b), loc(c) {} Cursor loc; }; typedef list Constraints; AType* var(Cursor c=Cursor()) { return new AType(varID++, c); } AType* type(const AST* ast) { AType** t = ref(ast); return t ? *t : def(ast, var(ast->loc)); } AType* named(const string& name) { return *ref(penv.sym(name)); } void constrain(const AST* o, AType* t) { assert(!dynamic_cast(o)); constraints.push_back(Constraint(type(o), t, o->loc)); } void solve() { apply(unify(constraints)); } void apply(const TSubst& substs); static TSubst unify(const Constraints& c); PEnv& penv; Constraints constraints; unsigned varID; }; /*************************************************************************** * Code Generation * ***************************************************************************/ struct CEnvPimpl; /// Compile-Time Environment struct CEnv { CEnv(PEnv& p, TEnv& t, CEngine& e, ostream& os=std::cout, ostream& es=std::cerr); ~CEnv(); typedef Env Code; typedef Env Vals; string gensym(const char* s="_") { return (format("%s%d") % s % symID++).str(); } void push() { code.push(); vals.push(); } void pop() { code.pop(); vals.pop(); } void precompile(AST* obj, CValue value) { vals.def(obj, value); } CValue compile(AST* obj); void optimise(CFunction f); void write(std::ostream& os); CEngine& engine; PEnv& penv; TEnv tenv; Code code; Vals vals; unsigned symID; CFunction alloc; Log log; private: CEnvPimpl* _pimpl; }; /*************************************************************************** * EVAL/REPL/MAIN * ***************************************************************************/ void initTypes(PEnv& penv, TEnv& tenv); void initLang(PEnv& penv, TEnv& tenv); CEnv* newCenv(PEnv& penv, TEnv& tenv); int eval(CEnv& cenv, const string& name, istream& is); int repl(CEnv& cenv); #endif // TUPLR_HPP