/* Copyright 2011-2012 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "serd_internal.h" #include #include #include #include #include #include #include #define NS_XSD "http://www.w3.org/2001/XMLSchema#" #define NS_RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#" #define TRY_THROW(exp) if (!(exp)) goto except; #define TRY_RET(exp) if (!(exp)) return 0; #ifdef SERD_STACK_CHECK # define SERD_STACK_ASSERT_TOP(reader, ref) \ assert(ref == reader->allocs[reader->n_allocs - 1]); #else # define SERD_STACK_ASSERT_TOP(reader, ref) #endif typedef struct { const uint8_t* filename; unsigned line; unsigned col; } Cursor; typedef uint32_t uchar; /* Reference to a node in the stack (we can not use pointers since the stack may be reallocated, invalidating any pointers to elements). */ typedef size_t Ref; typedef struct { Ref graph; Ref subject; Ref predicate; SerdStatementFlags* flags; } ReadContext; struct SerdReaderImpl { void* handle; void (*free_handle)(void* ptr); SerdBaseSink base_sink; SerdPrefixSink prefix_sink; SerdStatementSink statement_sink; SerdEndSink end_sink; Ref rdf_first; Ref rdf_rest; Ref rdf_nil; FILE* fd; SerdStack stack; SerdSyntax syntax; Cursor cur; uint8_t* buf; uint8_t* bprefix; size_t bprefix_len; unsigned next_id; uint8_t* read_buf; int32_t read_head; ///< Offset into read_buf bool from_file; ///< True iff reading from @ref fd bool eof; bool seen_genid; #ifdef SERD_STACK_CHECK Ref* allocs; ///< Stack of push offsets size_t n_allocs; ///< Number of stack pushes #endif }; static int error(SerdReader* reader, const char* fmt, ...) { va_list args; va_start(args, fmt); fprintf(stderr, "error: %s:%u:%u: ", reader->cur.filename, reader->cur.line, reader->cur.col); vfprintf(stderr, fmt, args); va_end(args); return 0; } static inline SerdStatus page(SerdReader* reader) { reader->read_head = 0; size_t n_read = fread(reader->read_buf, 1, SERD_PAGE_SIZE, reader->fd); if (n_read == 0) { reader->read_buf[0] = '\0'; reader->eof = true; return ferror(reader->fd) ? SERD_ERR_UNKNOWN : SERD_FAILURE; } else if (n_read < SERD_PAGE_SIZE) { reader->read_buf[n_read] = '\0'; } return SERD_SUCCESS; } static inline uint8_t peek_byte(SerdReader* reader) { return reader->read_buf[reader->read_head]; } static inline uint8_t eat_byte_safe(SerdReader* reader, const uint8_t byte) { assert(peek_byte(reader) == byte); ++reader->read_head; switch (byte) { case '\0': reader->eof = true; break; case '\n': ++reader->cur.line; reader->cur.col = 0; break; default: ++reader->cur.col; } if (reader->from_file && (reader->read_head == SERD_PAGE_SIZE)) { page(reader); } return byte; } static inline uint8_t eat_byte_check(SerdReader* reader, const uint8_t byte) { const uint8_t c = peek_byte(reader); if (c != byte) { return error(reader, "expected `%c', not `%c'\n", byte, c); } return eat_byte_safe(reader, byte); } static inline void eat_string(SerdReader* reader, const char* str, unsigned n) { for (unsigned i = 0; i < n; ++i) { eat_byte_check(reader, ((const uint8_t*)str)[i]); } } static Ref push_node_padded(SerdReader* reader, size_t maxlen, SerdType type, const char* str, size_t n_bytes) { uint8_t* mem = serd_stack_push(&reader->stack, sizeof(SerdNode) + maxlen + 1); SerdNode* const node = (SerdNode*)mem; node->n_bytes = node->n_chars = n_bytes; node->flags = 0; node->type = type; node->buf = NULL; uint8_t* buf = mem + sizeof(SerdNode); memcpy(buf, str, n_bytes + 1); #ifdef SERD_STACK_CHECK reader->allocs = realloc( reader->allocs, sizeof(uint8_t*) * (++reader->n_allocs)); reader->allocs[reader->n_allocs - 1] = (mem - reader->stack.buf); #endif return (uint8_t*)node - reader->stack.buf; } static Ref push_node(SerdReader* reader, SerdType type, const char* str, size_t n_bytes) { return push_node_padded(reader, n_bytes, type, str, n_bytes); } static inline SerdNode* deref(SerdReader* reader, const Ref ref) { if (ref) { SerdNode* node = (SerdNode*)(reader->stack.buf + ref); node->buf = (uint8_t*)node + sizeof(SerdNode); return node; } return NULL; } static inline void push_byte(SerdReader* reader, Ref ref, const uint8_t c) { SERD_STACK_ASSERT_TOP(reader, ref); uint8_t* const s = serd_stack_push(&reader->stack, 1); SerdNode* const node = (SerdNode*)(reader->stack.buf + ref); ++node->n_bytes; if (!(c & 0x80)) { // Starts with 0 bit, start of new character ++node->n_chars; } *(s - 1) = c; *s = '\0'; } static inline void push_replacement(SerdReader* reader, Ref dest) { push_byte(reader, dest, 0xEF); push_byte(reader, dest, 0xBF); push_byte(reader, dest, 0xBD); } static Ref pop_node(SerdReader* reader, Ref ref) { if (ref && ref != reader->rdf_first && ref != reader->rdf_rest && ref != reader->rdf_nil) { #ifdef SERD_STACK_CHECK SERD_STACK_ASSERT_TOP(reader, ref); --reader->n_allocs; #endif SerdNode* const node = deref(reader, ref); uint8_t* const top = reader->stack.buf + reader->stack.size; serd_stack_pop(&reader->stack, top - (uint8_t*)node); } return 0; } static inline bool emit_statement(SerdReader* reader, ReadContext ctx, Ref o, Ref d, Ref l) { bool ret = !reader->statement_sink || !reader->statement_sink( reader->handle, *ctx.flags, deref(reader, ctx.graph), deref(reader, ctx.subject), deref(reader, ctx.predicate), deref(reader, o), deref(reader, d), deref(reader, l)); *ctx.flags &= SERD_ANON_CONT|SERD_LIST_CONT; // Preserve only cont flags return ret; } static bool read_collection(SerdReader* reader, ReadContext ctx, Ref* dest); static bool read_predicateObjectList(SerdReader* reader, ReadContext ctx); // [40] hex ::= [#x30-#x39] | [#x41-#x46] static inline uint8_t read_hex(SerdReader* reader) { const uint8_t c = peek_byte(reader); if (in_range(c, 0x30, 0x39) || in_range(c, 0x41, 0x46)) { return eat_byte_safe(reader, c); } else { return error(reader, "illegal hexadecimal digit `%c'\n", c); } } static inline bool read_hex_escape(SerdReader* reader, unsigned length, Ref dest) { uint8_t buf[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; for (unsigned i = 0; i < length; ++i) { if (!(buf[i] = read_hex(reader))) { return false; } } uint32_t c; sscanf((const char*)buf, "%X", &c); unsigned size = 0; if (c < 0x00000080) { size = 1; } else if (c < 0x00000800) { size = 2; } else if (c < 0x00010000) { size = 3; } else if (c < 0x00110000) { size = 4; } else { error(reader, "unicode character 0x%X out of range\n", c); push_replacement(reader, dest); return true; } // Build output in buf // (Note # of bytes = # of leading 1 bits in first byte) switch (size) { case 4: buf[3] = 0x80 | (uint8_t)(c & 0x3F); c >>= 6; c |= (16 << 12); // set bit 4 case 3: buf[2] = 0x80 | (uint8_t)(c & 0x3F); c >>= 6; c |= (32 << 6); // set bit 5 case 2: buf[1] = 0x80 | (uint8_t)(c & 0x3F); c >>= 6; c |= 0xC0; // set bits 6 and 7 case 1: buf[0] = (uint8_t)c; } for (unsigned i = 0; i < size; ++i) { push_byte(reader, dest, buf[i]); } return true; } static inline bool read_character_escape(SerdReader* reader, Ref dest) { switch (peek_byte(reader)) { case '\\': push_byte(reader, dest, eat_byte_safe(reader, '\\')); return true; case 'u': eat_byte_safe(reader, 'u'); return read_hex_escape(reader, 4, dest); case 'U': eat_byte_safe(reader, 'U'); return read_hex_escape(reader, 8, dest); default: return false; } } static inline bool read_echaracter_escape(SerdReader* reader, Ref dest, SerdNodeFlags* flags) { switch (peek_byte(reader)) { case 't': eat_byte_safe(reader, 't'); push_byte(reader, dest, '\t'); return true; case 'n': *flags |= SERD_HAS_NEWLINE; eat_byte_safe(reader, 'n'); push_byte(reader, dest, '\n'); return true; case 'r': *flags |= SERD_HAS_NEWLINE; eat_byte_safe(reader, 'r'); push_byte(reader, dest, '\r'); return true; default: return read_character_escape(reader, dest); } } static inline bool read_scharacter_escape(SerdReader* reader, Ref dest, SerdNodeFlags* flags) { switch (peek_byte(reader)) { case '"': *flags |= SERD_HAS_QUOTE; push_byte(reader, dest, eat_byte_safe(reader, '"')); return true; default: return read_echaracter_escape(reader, dest, flags); } } static inline bool read_ucharacter_escape(SerdReader* reader, Ref dest) { SerdNodeFlags flags = 0; switch (peek_byte(reader)) { case '>': push_byte(reader, dest, eat_byte_safe(reader, '>')); return true; default: return read_echaracter_escape(reader, dest, &flags); } } static inline SerdStatus bad_char(SerdReader* reader, Ref dest, const char* fmt, uint8_t c) { error(reader, fmt, c); push_replacement(reader, dest); // Skip bytes until the next start byte for (uint8_t c = peek_byte(reader); (c & 0x80);) { eat_byte_safe(reader, c); c = peek_byte(reader); } return SERD_SUCCESS; } static SerdStatus read_utf8_character(SerdReader* reader, Ref dest, const uint8_t c) { unsigned size = 1; if ((c & 0xE0) == 0xC0) { // Starts with `110' size = 2; } else if ((c & 0xF0) == 0xE0) { // Starts with `1110' size = 3; } else if ((c & 0xF8) == 0xF0) { // Starts with `11110' size = 4; } else { return bad_char(reader, dest, "invalid UTF-8 start 0x%X\n", eat_byte_safe(reader, c)); } char bytes[4]; bytes[0] = eat_byte_safe(reader, c); // Check character validity for (unsigned i = 1; i < size; ++i) { if (((bytes[i] = peek_byte(reader)) & 0x80) == 0) { return bad_char(reader, dest, "invalid UTF-8 continuation 0x%X\n", bytes[i]); } eat_byte_safe(reader, bytes[i]); } // Emit character for (unsigned i = 0; i < size; ++i) { push_byte(reader, dest, bytes[i]); } return SERD_SUCCESS; } // [38] character ::= '\u' hex hex hex hex // | '\U' hex hex hex hex hex hex hex hex // | '\\' // | [#x20-#x5B] | [#x5D-#x10FFFF] static inline SerdStatus read_character(SerdReader* reader, Ref dest) { const uint8_t c = peek_byte(reader); assert(c != '\\'); // Only called from methods that handle escapes first if (c == '\0') { error(reader, "unexpected end of file\n", c); return SERD_ERR_BAD_SYNTAX; } else if (c < 0x20) { return bad_char(reader, dest, "unexpected control character 0x%X\n", eat_byte_safe(reader, c)); } else if (!(c & 0x80)) { push_byte(reader, dest, eat_byte_safe(reader, c)); return SERD_SUCCESS; } else { return read_utf8_character(reader, dest, c); } } // [43] lcharacter ::= echaracter | '\"' | #x9 | #xA | #xD static inline SerdStatus read_lcharacter(SerdReader* reader, Ref dest, SerdNodeFlags* flags) { const uint8_t c = peek_byte(reader); uint8_t buf[2]; switch (c) { case '"': eat_byte_safe(reader, '\"'); buf[0] = eat_byte_safe(reader, peek_byte(reader)); buf[1] = eat_byte_safe(reader, peek_byte(reader)); if (buf[0] == '\"' && buf[1] == '\"') { return SERD_FAILURE; } else { *flags |= SERD_HAS_QUOTE; push_byte(reader, dest, c); push_byte(reader, dest, buf[0]); push_byte(reader, dest, buf[1]); return SERD_SUCCESS; } case '\\': eat_byte_safe(reader, '\\'); if (read_scharacter_escape(reader, dest, flags)) { return SERD_SUCCESS; } else { error(reader, "illegal escape `\\%c'\n", peek_byte(reader)); return SERD_ERR_BAD_SYNTAX; } case 0xA: case 0xD: *flags |= SERD_HAS_NEWLINE; case 0x9: push_byte(reader, dest, eat_byte_safe(reader, c)); return SERD_SUCCESS; default: return read_character(reader, dest); } } // [42] scharacter ::= ( echaracter - #x22 ) | '\"' static inline SerdStatus read_scharacter(SerdReader* reader, Ref dest, SerdNodeFlags* flags) { uint8_t c = peek_byte(reader); switch (c) { case '\\': eat_byte_safe(reader, '\\'); if (read_scharacter_escape(reader, dest, flags)) { return SERD_SUCCESS; } else { error(reader, "illegal escape `\\%c'\n", peek_byte(reader)); return SERD_ERR_BAD_SYNTAX; } case '\"': return SERD_FAILURE; default: return read_character(reader, dest); } } // Spec: [41] ucharacter ::= ( character - #x3E ) | '\>' // Impl: [41] ucharacter ::= ( echaracter - #x3E ) | '\>' static inline SerdStatus read_ucharacter(SerdReader* reader, Ref dest) { const uint8_t c = peek_byte(reader); switch (c) { case '\\': eat_byte_safe(reader, '\\'); if (read_ucharacter_escape(reader, dest)) { return SERD_SUCCESS; } else { error(reader, "illegal escape `\\%c'\n", peek_byte(reader)); return SERD_FAILURE; } case '>': return SERD_FAILURE; default: return read_character(reader, dest); } } // [10] comment ::= '#' ( [^#xA #xD] )* static void read_comment(SerdReader* reader) { eat_byte_safe(reader, '#'); uint8_t c; while (((c = peek_byte(reader)) != 0xA) && (c != 0xD)) { eat_byte_safe(reader, c); } } // [24] ws ::= #x9 | #xA | #xD | #x20 | comment static inline bool read_ws(SerdReader* reader) { const uint8_t c = peek_byte(reader); switch (c) { case 0x9: case 0xA: case 0xD: case 0x20: eat_byte_safe(reader, c); return true; case '#': read_comment(reader); return true; default: return false; } } static inline bool read_ws_star(SerdReader* reader) { while (read_ws(reader)) {} return true; } static inline bool read_ws_plus(SerdReader* reader) { TRY_RET(read_ws(reader)); return read_ws_star(reader); } static inline bool peek_delim(SerdReader* reader, const char delim) { read_ws_star(reader); return peek_byte(reader) == delim; } static inline bool eat_delim(SerdReader* reader, const char delim) { if (peek_delim(reader, delim)) { eat_byte_safe(reader, delim); return read_ws_star(reader); } return false; } // [37] longString ::= #x22 #x22 #x22 lcharacter* #x22 #x22 #x22 static Ref read_longString(SerdReader* reader, SerdNodeFlags* flags) { Ref ref = push_node(reader, SERD_LITERAL, "", 0); SerdStatus st; while (!(st = read_lcharacter(reader, ref, flags))) {} if (st < SERD_ERR_UNKNOWN) { return ref; } return pop_node(reader, ref); } // [36] string ::= #x22 scharacter* #x22 static Ref read_string(SerdReader* reader, SerdNodeFlags* flags) { Ref ref = push_node(reader, SERD_LITERAL, "", 0); SerdStatus st; while (!(st = read_scharacter(reader, ref, flags))) {} if (st < SERD_ERR_UNKNOWN) { eat_byte_check(reader, '\"'); return ref; } return pop_node(reader, ref); } // [35] quotedString ::= string | longString static Ref read_quotedString(SerdReader* reader, SerdNodeFlags* flags) { eat_byte_safe(reader, '\"'); // q1 const uint8_t q2 = peek_byte(reader); if (q2 != '\"') { // Non-empty single-quoted string return read_string(reader, flags); } eat_byte_safe(reader, q2); const uint8_t q3 = peek_byte(reader); if (q3 != '\"') { // Empty single-quoted string return push_node(reader, SERD_LITERAL, "", 0); } eat_byte_safe(reader, '\"'); return read_longString(reader, flags); } // [34] relativeURI ::= ucharacter* static inline Ref read_relativeURI(SerdReader* reader) { Ref ref = push_node(reader, SERD_URI, "", 0); SerdStatus st; while (!(st = read_ucharacter(reader, ref))) {} if (st < SERD_ERR_UNKNOWN) { return ref; } return pop_node(reader, ref); } // [30] nameStartChar ::= [A-Z] | "_" | [a-z] // | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] // | [#x037F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] // | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF] static inline uchar read_nameStartChar(SerdReader* reader) { const uint8_t c = peek_byte(reader); if (c == '_' || is_alpha(c)) { // TODO: not strictly correct return eat_byte_safe(reader, c); } return 0; } // [31] nameChar ::= nameStartChar | '-' | [0-9] // | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040] static inline uchar read_nameChar(SerdReader* reader) { uchar c = read_nameStartChar(reader); if (c) return c; switch ((c = peek_byte(reader))) { case '-': case 0xB7: case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return eat_byte_safe(reader, c); default: // TODO: 0x300-0x036F | 0x203F-0x2040 return 0; } return 0; } // [33] prefixName ::= ( nameStartChar - '_' ) nameChar* static Ref read_prefixName(SerdReader* reader, Ref dest) { uint8_t c = peek_byte(reader); if (c == '_') { error(reader, "unexpected `_'\n"); return pop_node(reader, dest); } TRY_RET(c = read_nameStartChar(reader)); if (!dest) { dest = push_node(reader, SERD_CURIE, "", 0); } push_byte(reader, dest, c); while ((c = read_nameChar(reader))) { push_byte(reader, dest, c); } return dest; } // [32] name ::= nameStartChar nameChar* static Ref read_name(SerdReader* reader, Ref dest) { uchar c = read_nameStartChar(reader); if (!c) { return 0; } do { push_byte(reader, dest, c); } while ((c = read_nameChar(reader)) != 0); return dest; } // [29] language ::= [a-z]+ ('-' [a-z0-9]+ )* static Ref read_language(SerdReader* reader) { uint8_t c = peek_byte(reader); if (!in_range(c, 'a', 'z')) { return error(reader, "unexpected `%c'\n", c); } Ref ref = push_node(reader, SERD_LITERAL, "", 0); push_byte(reader, ref, eat_byte_safe(reader, c)); while ((c = peek_byte(reader)) && in_range(c, 'a', 'z')) { push_byte(reader, ref, eat_byte_safe(reader, c)); } while (peek_byte(reader) == '-') { push_byte(reader, ref, eat_byte_safe(reader, '-')); while ((c = peek_byte(reader)) && ( in_range(c, 'a', 'z') || in_range(c, '0', '9'))) { push_byte(reader, ref, eat_byte_safe(reader, c)); } } return ref; } // [28] uriref ::= '<' relativeURI '>' static Ref read_uriref(SerdReader* reader) { TRY_RET(eat_byte_check(reader, '<')); Ref const str = read_relativeURI(reader); if (str && eat_byte_check(reader, '>')) { return str; } return pop_node(reader, str); } // [27] qname ::= prefixName? ':' name? static Ref read_qname(SerdReader* reader, Ref dest, bool read_prefix) { Ref str = 0; if (!dest) { dest = push_node(reader, SERD_CURIE, "", 0); } if (read_prefix) { read_prefixName(reader, dest); } TRY_THROW(eat_byte_check(reader, ':')); push_byte(reader, dest, ':'); str = read_name(reader, dest); return str ? str : dest; except: return pop_node(reader, dest); } static bool read_0_9(SerdReader* reader, Ref str, bool at_least_one) { uint8_t c; if (at_least_one) { if (!is_digit((c = peek_byte(reader)))) { return error(reader, "expected digit\n"); } push_byte(reader, str, eat_byte_safe(reader, c)); } while (is_digit((c = peek_byte(reader)))) { push_byte(reader, str, eat_byte_safe(reader, c)); } return true; } // [19] exponent ::= [eE] ('-' | '+')? [0-9]+ // [18] decimal ::= ( '-' | '+' )? ( [0-9]+ '.' [0-9]* // | '.' ([0-9])+ // | ([0-9])+ ) // [17] double ::= ( '-' | '+' )? ( [0-9]+ '.' [0-9]* exponent // | '.' ([0-9])+ exponent // | ([0-9])+ exponent ) // [16] integer ::= ( '-' | '+' ) ? [0-9]+ static bool read_number(SerdReader* reader, Ref* dest, Ref* datatype) { #define XSD_DECIMAL NS_XSD "decimal" #define XSD_DOUBLE NS_XSD "double" #define XSD_INTEGER NS_XSD "integer" Ref ref = push_node(reader, SERD_LITERAL, "", 0); uint8_t c = peek_byte(reader); bool has_decimal = false; if (c == '-' || c == '+') { push_byte(reader, ref, eat_byte_safe(reader, c)); } if ((c = peek_byte(reader)) == '.') { has_decimal = true; // decimal case 2 (e.g. '.0' or `-.0' or `+.0') push_byte(reader, ref, eat_byte_safe(reader, c)); TRY_THROW(read_0_9(reader, ref, true)); } else { // all other cases ::= ( '-' | '+' ) [0-9]+ ( . )? ( [0-9]+ )? ... assert(is_digit(c)); read_0_9(reader, ref, true); if ((c = peek_byte(reader)) == '.') { has_decimal = true; push_byte(reader, ref, eat_byte_safe(reader, c)); read_0_9(reader, ref, false); } } c = peek_byte(reader); if (c == 'e' || c == 'E') { // double push_byte(reader, ref, eat_byte_safe(reader, c)); switch ((c = peek_byte(reader))) { case '+': case '-': push_byte(reader, ref, eat_byte_safe(reader, c)); default: break; } read_0_9(reader, ref, true); *datatype = push_node(reader, SERD_URI, XSD_DOUBLE, sizeof(XSD_DOUBLE) - 1); } else if (has_decimal) { *datatype = push_node(reader, SERD_URI, XSD_DECIMAL, sizeof(XSD_DECIMAL) - 1); } else { *datatype = push_node(reader, SERD_URI, XSD_INTEGER, sizeof(XSD_INTEGER) - 1); } *dest = ref; return true; except: pop_node(reader, *datatype); pop_node(reader, ref); return false; } // [25] resource ::= uriref | qname static bool read_resource(SerdReader* reader, Ref* dest) { switch (peek_byte(reader)) { case '<': *dest = read_uriref(reader); break; default: *dest = read_qname(reader, 0, true); } return *dest != 0; } static bool read_literal(SerdReader* reader, Ref* dest, Ref* datatype, Ref* lang, SerdNodeFlags* flags) { Ref str = read_quotedString(reader, flags); if (!str) { return false; } switch (peek_byte(reader)) { case '^': eat_byte_safe(reader, '^'); eat_byte_check(reader, '^'); TRY_THROW(read_resource(reader, datatype)); break; case '@': eat_byte_safe(reader, '@'); TRY_THROW(*lang = read_language(reader)); } *dest = str; return true; except: pop_node(reader, str); return false; } inline static bool is_token_end(const uint8_t c) { switch (c) { case 0x9: case 0xA: case 0xD: case 0x20: case '\0': case '#': case '.': case ';': case '<': return true; default: return false; } } // [9] verb ::= predicate | 'a' static bool read_verb(SerdReader* reader, Ref* dest) { SerdNode* node; bool ret; switch (peek_byte(reader)) { case '<': ret = (*dest = read_uriref(reader)); break; default: /* Either a qname, or "a". Read the prefix first, and if it is in fact "a", produce that instead. */ *dest = read_prefixName(reader, 0); node = deref(reader, *dest); if (node && node->n_bytes == 1 && node->buf[0] == 'a' && is_token_end(peek_byte(reader))) { pop_node(reader, *dest); ret = (*dest = push_node(reader, SERD_URI, NS_RDF "type", 47)); } else { ret = (*dest = read_qname(reader, *dest, false)); } } read_ws_star(reader); return ret; } // [26] nodeID ::= '_:' name static Ref read_nodeID(SerdReader* reader) { eat_byte_safe(reader, '_'); eat_byte_check(reader, ':'); Ref ref = push_node(reader, SERD_BLANK, reader->bprefix ? (char*)reader->bprefix : "", reader->bprefix_len); if (!read_name(reader, ref)) { return error(reader, "illegal character at start of name\n"); } if (reader->syntax == SERD_TURTLE) { const char* const buf = (const char*)deref(reader, ref)->buf; if (!strncmp(buf, "genid", 5)) { memcpy((char*)buf, "docid", 5); // Prevent clash reader->seen_genid = true; } else if (reader->seen_genid && !strncmp(buf, "docid", 5)) { error(reader, "found both `genid' and `docid' blank IDs\n"); error(reader, "resolve this with a blank ID prefix\n"); return pop_node(reader, ref); } } return ref; } static void set_blank_id(SerdReader* reader, Ref ref, size_t buf_size) { SerdNode* node = deref(reader, ref); const char* prefix = reader->bprefix ? (const char*)reader->bprefix : ""; node->n_bytes = node->n_chars = snprintf( (char*)node->buf, buf_size, "%sgenid%u", prefix, reader->next_id++); } static size_t genid_size(SerdReader* reader) { return reader->bprefix_len + 5 + 10 + 1; // + "genid" + UINT32_MAX + \0 } static Ref blank_id(SerdReader* reader) { Ref ref = push_node_padded(reader, genid_size(reader), SERD_BLANK, "", 0); set_blank_id(reader, ref, genid_size(reader)); return ref; } // Spec: [21] blank ::= nodeID | '[]' // | '[' predicateObjectList ']' | collection // Impl: [21] blank ::= nodeID | '[' ws* ']' // | '[' ws* predicateObjectList ws* ']' | collection static bool read_blank(SerdReader* reader, ReadContext ctx, bool subject, Ref* dest) { const SerdStatementFlags old_flags = *ctx.flags; switch (peek_byte(reader)) { case '_': return (*dest = read_nodeID(reader)); case '[': eat_byte_safe(reader, '['); const bool empty = peek_delim(reader, ']'); if (empty) { *ctx.flags |= (subject) ? SERD_EMPTY_S : SERD_EMPTY_O; } else { *ctx.flags |= (subject) ? SERD_ANON_S_BEGIN : SERD_ANON_O_BEGIN; } *dest = blank_id(reader); if (ctx.subject) { TRY_RET(emit_statement(reader, ctx, *dest, 0, 0)); } ctx.subject = *dest; if (!empty) { *ctx.flags &= ~(SERD_LIST_CONT); if (!subject) { *ctx.flags |= SERD_ANON_CONT; } read_predicateObjectList(reader, ctx); read_ws_star(reader); if (reader->end_sink) { reader->end_sink(reader->handle, deref(reader, *dest)); } *ctx.flags = old_flags; } eat_byte_check(reader, ']'); return true; case '(': return read_collection(reader, ctx, dest); default: return error(reader, "illegal blank node\n"); } } // [13] object ::= resource | blank | literal // Recurses, calling statement_sink for every statement encountered. // Leaves stack in original calling state (i.e. pops everything it pushes). static bool read_object(SerdReader* reader, ReadContext ctx) { static const char* const XSD_BOOLEAN = NS_XSD "boolean"; static const size_t XSD_BOOLEAN_LEN = 40; #ifndef NDEBUG const size_t orig_stack_size = reader->stack.size; #endif bool ret = false; bool emit = (ctx.subject != 0); SerdNode* node = NULL; Ref o = 0; Ref datatype = 0; Ref lang = 0; uint32_t flags = 0; const uint8_t c = peek_byte(reader); switch (c) { case '\0': case ')': return false; case '[': case '(': emit = false; // fall through case '_': TRY_THROW(ret = read_blank(reader, ctx, false, &o)); break; case '<': case ':': TRY_THROW(ret = read_resource(reader, &o)); break; case '+': case '-': case '.': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': TRY_THROW(ret = read_number(reader, &o, &datatype)); break; case '\"': TRY_THROW(ret = read_literal(reader, &o, &datatype, &lang, &flags)); break; default: /* Either a boolean literal, or a qname. Read the prefix first, and if it is in fact a "true" or "false" literal, produce that instead. */ o = read_prefixName(reader, 0); node = deref(reader, o); if (node && is_token_end(peek_byte(reader)) && ((node->n_bytes == 4 && !memcmp(node->buf, "true", 4)) || (node->n_bytes == 5 && !memcmp(node->buf, "false", 5)))) { node->type = SERD_LITERAL; datatype = push_node(reader, SERD_URI, XSD_BOOLEAN, XSD_BOOLEAN_LEN); } else { o = o ? o : push_node(reader, SERD_CURIE, "", 0); o = read_qname(reader, o, false); } ret = o; } if (ret && emit) { deref(reader, o)->flags = flags; ret = emit_statement(reader, ctx, o, datatype, lang); } except: pop_node(reader, lang); pop_node(reader, datatype); pop_node(reader, o); #ifndef NDEBUG assert(reader->stack.size == orig_stack_size); #endif return ret; } // Spec: [8] objectList ::= object ( ',' object )* // Impl: [8] objectList ::= object ( ws* ',' ws* object )* static bool read_objectList(SerdReader* reader, ReadContext ctx) { TRY_RET(read_object(reader, ctx)); while (eat_delim(reader, ',')) { TRY_RET(read_object(reader, ctx)); } return true; } // Spec: [7] predicateObjectList ::= verb objectList // (';' verb objectList)* (';')? // Impl: [7] predicateObjectList ::= verb ws* objectList // (ws* ';' ws* verb ws+ objectList)* (';')? static bool read_predicateObjectList(SerdReader* reader, ReadContext ctx) { TRY_RET(read_verb(reader, &ctx.predicate)); TRY_THROW(read_objectList(reader, ctx)); ctx.predicate = pop_node(reader, ctx.predicate); while (eat_delim(reader, ';')) { switch (peek_byte(reader)) { case '.': case ']': return true; default: TRY_THROW(read_verb(reader, &ctx.predicate)); TRY_THROW(read_objectList(reader, ctx)); ctx.predicate = pop_node(reader, ctx.predicate); } } pop_node(reader, ctx.predicate); return true; except: pop_node(reader, ctx.predicate); return false; } static bool end_collection(SerdReader* reader, ReadContext ctx, Ref n1, Ref n2, bool ret) { pop_node(reader, n2); pop_node(reader, n1); *ctx.flags &= ~SERD_LIST_CONT; return ret && (eat_byte_safe(reader, ')') == ')'); } // [22] itemList ::= object+ // [23] collection ::= '(' itemList? ')' static bool read_collection(SerdReader* reader, ReadContext ctx, Ref* dest) { eat_byte_safe(reader, '('); bool end = peek_delim(reader, ')'); *dest = end ? reader->rdf_nil : blank_id(reader); if (ctx.subject) { // subject predicate _:head *ctx.flags |= (end ? 0 : SERD_LIST_O_BEGIN); TRY_RET(emit_statement(reader, ctx, *dest, 0, 0)); *ctx.flags |= SERD_LIST_CONT; } else { *ctx.flags |= (end ? 0 : SERD_LIST_S_BEGIN); } if (end) { return end_collection(reader, ctx, 0, 0, true); } /* The order of node allocation here is necessarily not in stack order, so we create two nodes and recycle them throughout. */ Ref n1 = push_node_padded(reader, genid_size(reader), SERD_BLANK, "", 0); Ref n2 = 0; Ref node = n1; Ref rest = 0; ctx.subject = *dest; while (!(end = peek_delim(reader, ')'))) { // _:node rdf:first object ctx.predicate = reader->rdf_first; if (!read_object(reader, ctx)) { return end_collection(reader, ctx, n1, n2, false); } if (!(end = peek_delim(reader, ')'))) { /* Give rest a new ID. Done as late as possible to ensure it is used and > IDs generated by read_object above. */ if (!rest) { rest = n2 = blank_id(reader); // First pass, push a new node } else { set_blank_id(reader, rest, genid_size(reader)); } } // _:node rdf:rest _:rest *ctx.flags |= SERD_LIST_CONT; ctx.predicate = reader->rdf_rest; TRY_RET(emit_statement(reader, ctx, (end ? reader->rdf_nil : rest), 0, 0)); ctx.subject = rest; // _:node = _:rest rest = node; // _:rest = (old)_:node node = ctx.subject; // invariant } return end_collection(reader, ctx, n1, n2, true); } // [11] subject ::= resource | blank static Ref read_subject(SerdReader* reader, ReadContext ctx) { Ref subject = 0; switch (peek_byte(reader)) { case '[': case '(': case '_': read_blank(reader, ctx, true, &subject); break; default: read_resource(reader, &subject); } return subject; } // Spec: [6] triples ::= subject predicateObjectList // Impl: [6] triples ::= subject ws+ predicateObjectList static bool read_triples(SerdReader* reader, ReadContext ctx) { const Ref subject = read_subject(reader, ctx); bool ret = false; if (subject) { ctx.subject = subject; TRY_RET(read_ws_plus(reader)); ret = read_predicateObjectList(reader, ctx); pop_node(reader, subject); } ctx.subject = ctx.predicate = 0; return ret; } // [5] base ::= '@base' ws+ uriref static bool read_base(SerdReader* reader) { // `@' is already eaten in read_directive eat_string(reader, "base", 4); TRY_RET(read_ws_plus(reader)); Ref uri; TRY_RET(uri = read_uriref(reader)); if (reader->base_sink) { reader->base_sink(reader->handle, deref(reader, uri)); } pop_node(reader, uri); return true; } // Spec: [4] prefixID ::= '@prefix' ws+ prefixName? ':' uriref // Impl: [4] prefixID ::= '@prefix' ws+ prefixName? ':' ws* uriref static bool read_prefixID(SerdReader* reader) { bool ret = true; Ref name = 0; Ref uri = 0; // `@' is already eaten in read_directive eat_string(reader, "prefix", 6); TRY_RET(read_ws_plus(reader)); name = read_prefixName(reader, 0); if (!name) { name = push_node(reader, SERD_LITERAL, "", 0); } TRY_THROW(eat_byte_check(reader, ':') == ':'); read_ws_star(reader); TRY_THROW(uri = read_uriref(reader)); if (reader->prefix_sink) { ret = !reader->prefix_sink(reader->handle, deref(reader, name), deref(reader, uri)); } pop_node(reader, uri); except: pop_node(reader, name); return ret; } // [3] directive ::= prefixID | base static bool read_directive(SerdReader* reader) { eat_byte_safe(reader, '@'); switch (peek_byte(reader)) { case 'b': return read_base(reader); case 'p': return read_prefixID(reader); default: return error(reader, "illegal directive\n"); } } // Spec: [1] statement ::= directive '.' | triples '.' | ws+ // Impl: [1] statement ::= directive ws* '.' | triples ws* '.' | ws+ static bool read_statement(SerdReader* reader) { SerdStatementFlags flags = 0; ReadContext ctx = { 0, 0, 0, &flags }; read_ws_star(reader); switch (peek_byte(reader)) { case '\0': reader->eof = true; return true; case '@': TRY_RET(read_directive(reader)); break; default: TRY_RET(read_triples(reader, ctx)); break; } read_ws_star(reader); return eat_byte_check(reader, '.'); } // [1] turtleDoc ::= (statement)* static bool read_turtleDoc(SerdReader* reader) { while (!reader->eof) { TRY_RET(read_statement(reader)); } return true; } SERD_API SerdReader* serd_reader_new(SerdSyntax syntax, void* handle, void (*free_handle)(void*), SerdBaseSink base_sink, SerdPrefixSink prefix_sink, SerdStatementSink statement_sink, SerdEndSink end_sink) { const Cursor cur = { NULL, 0, 0 }; SerdReader* me = (SerdReader*)malloc(sizeof(struct SerdReaderImpl)); me->handle = handle; me->free_handle = free_handle; me->base_sink = base_sink; me->prefix_sink = prefix_sink; me->statement_sink = statement_sink; me->end_sink = end_sink; me->fd = 0; me->stack = serd_stack_new(SERD_PAGE_SIZE); me->syntax = syntax; me->cur = cur; me->bprefix = NULL; me->bprefix_len = 0; me->next_id = 1; me->read_buf = 0; me->read_head = 0; me->eof = false; me->seen_genid = false; #ifdef SERD_STACK_CHECK me->allocs = 0; me->n_allocs = 0; #endif me->rdf_first = push_node(me, SERD_URI, NS_RDF "first", 48); me->rdf_rest = push_node(me, SERD_URI, NS_RDF "rest", 47); me->rdf_nil = push_node(me, SERD_URI, NS_RDF "nil", 46); return me; } SERD_API void serd_reader_free(SerdReader* reader) { pop_node(reader, reader->rdf_nil); pop_node(reader, reader->rdf_rest); pop_node(reader, reader->rdf_first); #ifdef SERD_STACK_CHECK free(reader->allocs); #endif free(reader->stack.buf); free(reader->bprefix); if (reader->free_handle) { reader->free_handle(reader->handle); } free(reader); } SERD_API void* serd_reader_get_handle(const SerdReader* reader) { return reader->handle; } SERD_API void serd_reader_add_blank_prefix(SerdReader* reader, const uint8_t* prefix) { free(reader->bprefix); reader->bprefix_len = 0; reader->bprefix = NULL; if (prefix) { reader->bprefix_len = strlen((const char*)prefix); reader->bprefix = (uint8_t*)malloc(reader->bprefix_len + 1); memcpy(reader->bprefix, prefix, reader->bprefix_len + 1); } } SERD_API SerdStatus serd_reader_read_file(SerdReader* reader, const uint8_t* uri) { const uint8_t* path = serd_uri_to_path(uri); if (!path) { return SERD_ERR_BAD_ARG; } FILE* fd = serd_fopen((const char*)path, "r"); if (!fd) { return SERD_ERR_UNKNOWN; } SerdStatus ret = serd_reader_read_file_handle(reader, fd, path); fclose(fd); return ret; } static void skip_bom(SerdReader* me) { const uint8_t* const b = me->read_buf; if (b[0] == 0xEF && b[1] == 0xBB && b[2] == 0xBF) { me->read_head += 3; } } SERD_API SerdStatus serd_reader_read_file_handle(SerdReader* me, FILE* file, const uint8_t* name) { const Cursor cur = { name, 1, 1 }; me->fd = file; me->read_head = 0; me->cur = cur; me->from_file = true; me->eof = false; me->read_buf = (uint8_t*)serd_bufalloc(SERD_PAGE_SIZE); memset(me->read_buf, '\0', SERD_PAGE_SIZE); SerdStatus st = page(me); if (!st) { skip_bom(me); st = read_turtleDoc(me) ? SERD_SUCCESS : SERD_ERR_UNKNOWN; } free(me->read_buf); me->fd = 0; me->read_buf = NULL; return st; } SERD_API SerdStatus serd_reader_read_string(SerdReader* me, const uint8_t* utf8) { const Cursor cur = { (const uint8_t*)"(string)", 1, 1 }; me->read_buf = (uint8_t*)utf8; me->read_head = 0; me->cur = cur; me->from_file = false; me->eof = false; skip_bom(me); const bool ret = read_turtleDoc(me); me->read_buf = NULL; return ret ? SERD_SUCCESS : SERD_ERR_UNKNOWN; }