/* Copyright 2011 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "sord/sord.h" static const int DIGITS = 3; static const int MAX_NUM = 999; static const unsigned n_objects_per = 2; typedef struct { SordQuad query; int expected_num_results; } QueryTest; #define USTR(s) ((const uint8_t*)(s)) static SordNode* uri(SordWorld* world, int num) { if (num == 0) return 0; char str[] = "eg:000"; char* uri_num = str + 3; // First `0' snprintf(uri_num, DIGITS + 1, "%0*d", DIGITS, num); return sord_new_uri(world, (const uint8_t*)str); } static int test_fail(const char* fmt, ...) { va_list args; va_start(args, fmt); fprintf(stderr, "error: "); vfprintf(stderr, fmt, args); va_end(args); return 1; } static int generate(SordWorld* world, SordModel* sord, size_t n_quads, SordNode* graph) { fprintf(stderr, "Generating %zu (S P *) quads with %u objects each\n", n_quads, n_objects_per); for (size_t i = 0; i < n_quads; ++i) { int num = (i * n_objects_per) + 1; SordNode* ids[2 + n_objects_per]; for (unsigned j = 0; j < 2 + n_objects_per; ++j) { ids[j] = uri(world, num++); } for (unsigned j = 0; j < n_objects_per; ++j) { SordQuad tup = { ids[0], ids[1], ids[2 + j] }; if (!sord_add(sord, tup)) { return test_fail("Fail: Failed to add quad\n"); } } for (unsigned j = 0; j < 2 + n_objects_per; ++j) { sord_node_free(world, ids[j]); } } // Add some literals // (98 4 "hello") and (98 4 "hello"^^<5>) SordQuad tup = { 0, 0, 0, 0}; tup[0] = uri(world, 98); tup[1] = uri(world, 4); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = 0; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, uri(world, 5), USTR("hello"), NULL); if (!sord_add(sord, tup)) { return test_fail("Failed to add typed literal\n"); } // (96 4 "hello"^^<4>) and (96 4 "hello"^^<5>) tup[0] = uri(world, 96); tup[1] = uri(world, 4); tup[2] = sord_new_literal(world, uri(world, 4), USTR("hello"), NULL); tup[3] = 0; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, uri(world, 5), USTR("hello"), NULL); if (!sord_add(sord, tup)) { return test_fail("Failed to add typed literal\n"); } // (94 5 "hello") and (94 5 "hello"@en-gb) tup[0] = uri(world, 94); tup[1] = uri(world, 5); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = 0; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, NULL, USTR("hello"), "en-gb"); if (!sord_add(sord, tup)) { return test_fail("Failed to add literal with language\n"); } // (92 6 "hello"@en-us) and (92 5 "hello"@en-gb) tup[0] = uri(world, 92); tup[1] = uri(world, 6); tup[2] = sord_new_literal(world, 0, USTR("hello"), "en-us"); tup[3] = 0; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, NULL, USTR("hello"), "en-gb"); if (!sord_add(sord, tup)) { return test_fail("Failed to add literal with language\n"); } sord_node_free(world, (SordNode*)tup[0]); sord_node_free(world, (SordNode*)tup[2]); tup[0] = uri(world, 14); tup[2] = sord_new_literal(world, 0, USTR("bonjour"), "fr"); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, 0, USTR("salut"), "fr"); sord_add(sord, tup); // Attempt to add some duplicates if (sord_add(sord, tup)) { return test_fail("Fail: Successfully added duplicate quad\n"); } if (sord_add(sord, tup)) { return test_fail("Fail: Successfully added duplicate quad\n"); } // Add a blank node subject sord_node_free(world, (SordNode*)tup[0]); tup[0] = sord_new_blank(world, USTR("ablank")); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[1]); sord_node_free(world, (SordNode*)tup[2]); tup[1] = uri(world, 6); tup[2] = uri(world, 7); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[0]); sord_node_free(world, (SordNode*)tup[1]); sord_node_free(world, (SordNode*)tup[2]); return EXIT_SUCCESS; } #define TUP_FMT "(%6s %6s %6s)" #define TUP_FMT_ARGS(t) \ ((t)[0] ? sord_node_get_string((t)[0]) : USTR("*")), \ ((t)[1] ? sord_node_get_string((t)[1]) : USTR("*")), \ ((t)[2] ? sord_node_get_string((t)[2]) : USTR("*")) static int test_read(SordWorld* world, SordModel* sord, SordNode* g, const size_t n_quads) { int ret = EXIT_SUCCESS; SordQuad id; SordIter* iter = sord_begin(sord); if (sord_iter_get_model(iter) != sord) { return test_fail("Fail: Iterator has incorrect sord pointer\n"); } for (; !sord_iter_end(iter); sord_iter_next(iter)) sord_iter_get(iter, id); // Attempt to increment past end if (!sord_iter_next(iter)) { return test_fail("Fail: Successfully incremented past end\n"); } sord_iter_free(iter); const uint8_t* s = USTR("hello"); SordNode* plain_hello = sord_new_literal(world, 0, s, NULL); SordNode* type4_hello = sord_new_literal(world, uri(world, 4), s, NULL); SordNode* type5_hello = sord_new_literal(world, uri(world, 5), s, NULL); SordNode* gb_hello = sord_new_literal(world, NULL, s, "en-gb"); SordNode* us_hello = sord_new_literal(world, NULL, s, "en-us"); #define NUM_PATTERNS 17 QueryTest patterns[NUM_PATTERNS] = { { { 0, 0, 0 }, (n_quads * n_objects_per) + 12 }, { { uri(world, 9), uri(world, 9), uri(world, 9) }, 0 }, { { uri(world, 1), uri(world, 2), uri(world, 4) }, 1 }, { { uri(world, 3), uri(world, 4), uri(world, 0) }, 2 }, { { uri(world, 0), uri(world, 2), uri(world, 4) }, 1 }, { { uri(world, 0), uri(world, 0), uri(world, 4) }, 1 }, { { uri(world, 1), uri(world, 0), uri(world, 0) }, 2 }, { { uri(world, 1), uri(world, 0), uri(world, 4) }, 1 }, { { uri(world, 0), uri(world, 2), uri(world, 0) }, 2 }, { { uri(world, 98), uri(world, 4), plain_hello }, 1 }, { { uri(world, 98), uri(world, 4), type5_hello }, 1 }, { { uri(world, 96), uri(world, 4), type4_hello }, 1 }, { { uri(world, 96), uri(world, 4), type5_hello }, 1 }, { { uri(world, 94), uri(world, 5), plain_hello }, 1 }, { { uri(world, 94), uri(world, 5), gb_hello }, 1 }, { { uri(world, 92), uri(world, 6), gb_hello }, 1 }, { { uri(world, 92), uri(world, 6), us_hello }, 1 } }; SordQuad match = { uri(world, 1), uri(world, 2), uri(world, 4), g }; if (!sord_contains(sord, match)) { return test_fail("Fail: No match for " TUP_FMT "\n", TUP_FMT_ARGS(match)); } SordQuad nomatch = { uri(world, 1), uri(world, 2), uri(world, 9), g }; if (sord_contains(sord, nomatch)) { return test_fail("Fail: False match for " TUP_FMT "\n", TUP_FMT_ARGS(nomatch)); } for (unsigned i = 0; i < NUM_PATTERNS; ++i) { QueryTest test = patterns[i]; SordQuad pat = { test.query[0], test.query[1], test.query[2], g }; fprintf(stderr, "Query " TUP_FMT "... ", TUP_FMT_ARGS(pat)); iter = sord_find(sord, pat); int num_results = 0; for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); ++num_results; if (!sord_quad_match(pat, id)) { sord_iter_free(iter); return test_fail( "Fail: Query result " TUP_FMT " does not match pattern\n", TUP_FMT_ARGS(id)); } } sord_iter_free(iter); if (num_results != test.expected_num_results) { return test_fail("Fail: Expected %d results, got %d\n", test.expected_num_results, num_results); } fprintf(stderr, "OK (%u matches)\n", test.expected_num_results); } // Query blank node subject SordQuad pat = { sord_new_blank(world, USTR("ablank")), 0, 0 }; if (!pat[0]) { return test_fail("Blank node subject lost\n"); } fprintf(stderr, "Query " TUP_FMT "... ", TUP_FMT_ARGS(pat)); iter = sord_find(sord, pat); int num_results = 0; for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); ++num_results; if (!sord_quad_match(pat, id)) { sord_iter_free(iter); return test_fail( "Fail: Query result " TUP_FMT " does not match pattern\n", TUP_FMT_ARGS(id)); } } fprintf(stderr, "OK\n"); sord_node_free(world, (SordNode*)pat[0]); sord_iter_free(iter); if (num_results != 2) { return test_fail("Blank node subject query failed\n"); } // Test nested queries fprintf(stderr, "Nested Queries... "); const SordNode* last_subject = 0; iter = sord_search(sord, NULL, NULL, NULL, NULL); for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); if (id[0] == last_subject) continue; SordQuad subpat = { id[0], 0, 0 }; SordIter* subiter = sord_find(sord, subpat); uint64_t num_sub_results = 0; if (sord_iter_get_node(subiter, SORD_SUBJECT) != id[0]) { return test_fail("Fail: Incorrect initial submatch\n"); } for (; !sord_iter_end(subiter); sord_iter_next(subiter)) { SordQuad subid; sord_iter_get(subiter, subid); if (!sord_quad_match(subpat, subid)) { sord_iter_free(iter); sord_iter_free(subiter); return test_fail( "Fail: Nested query result does not match pattern\n"); } ++num_sub_results; } sord_iter_free(subiter); if (num_sub_results != n_objects_per) { return test_fail( "Fail: Nested query " TUP_FMT " failed" " (%d results, expected %d)\n", TUP_FMT_ARGS(subpat), num_sub_results, n_objects_per); } uint64_t count = sord_count(sord, id[0], 0, 0, 0); if (count != num_sub_results) { return test_fail("Fail: Query " TUP_FMT " sord_count() %d" "does not match result count %d\n", TUP_FMT_ARGS(subpat), count, num_sub_results); } last_subject = id[0]; } fprintf(stderr, "OK\n\n"); sord_iter_free(iter); return ret; } int main(int argc, char** argv) { static const size_t n_quads = 300; sord_free(NULL); // Shouldn't crash SordWorld* world = sord_world_new(); // Create with minimal indexing SordModel* sord = sord_new(world, SORD_SPO, false); generate(world, sord, n_quads, NULL); if (test_read(world, sord, NULL, n_quads)) { sord_free(sord); sord_world_free(world); return EXIT_FAILURE; } // Check adding tuples with NULL fields fails const size_t initial_num_quads = sord_num_quads(sord); SordQuad tup = { 0, 0, 0, 0}; if (sord_add(sord, tup)) { return test_fail("Added NULL tuple\n"); } tup[0] = uri(world, 1); if (sord_add(sord, tup)) { return test_fail("Added tuple with NULL P and O\n"); } tup[1] = uri(world, 2); if (sord_add(sord, tup)) { return test_fail("Added tuple with NULL O\n"); } if (sord_num_quads(sord) != initial_num_quads) { return test_fail("Num quads %zu != %zu\n", sord_num_quads(sord), initial_num_quads); } // Check interning merges equivalent values SordNode* uri_id = sord_new_uri(world, USTR("http://example.org")); SordNode* blank_id = sord_new_blank(world, USTR("testblank")); SordNode* lit_id = sord_new_literal(world, uri_id, USTR("hello"), NULL); if (sord_node_get_type(uri_id) != SORD_URI) { return test_fail("URI node has incorrect type\n"); } else if (sord_node_get_type(blank_id) != SORD_BLANK) { return test_fail("Blank node has incorrect type\n"); } else if (sord_node_get_type(lit_id) != SORD_LITERAL) { return test_fail("Literal node has incorrect type\n"); } const size_t initial_num_nodes = sord_num_nodes(world); SordNode* uri_id2 = sord_new_uri(world, USTR("http://example.org")); SordNode* blank_id2 = sord_new_blank(world, USTR("testblank")); SordNode* lit_id2 = sord_new_literal(world, uri_id, USTR("hello"), NULL); if (uri_id2 != uri_id || !sord_node_equals(uri_id2, uri_id)) { fprintf(stderr, "Fail: URI interning failed (duplicates)\n"); goto fail; } else if (blank_id2 != blank_id || !sord_node_equals(blank_id2, blank_id)) { fprintf(stderr, "Fail: Blank node interning failed (duplicates)\n"); goto fail; } else if (lit_id2 != lit_id || !sord_node_equals(lit_id2, lit_id)) { fprintf(stderr, "Fail: Literal interning failed (duplicates)\n"); goto fail; } size_t len; const uint8_t* str = sord_node_get_string_counted(lit_id2, &len); if (strcmp((const char*)str, "hello")) { return test_fail("Literal node corrupt\n"); } else if (len != strlen("hello")) { return test_fail("Literal length incorrect\n"); } if (sord_num_nodes(world) != initial_num_nodes) { return test_fail("Num nodes %zu != %zu\n", sord_num_nodes(world), initial_num_nodes); } // Check interning doesn't clash non-equivalent values SordNode* uri_id3 = sord_new_uri(world, USTR("http://example.orgX")); SordNode* blank_id3 = sord_new_blank(world, USTR("testblankX")); SordNode* lit_id3 = sord_new_literal(world, uri_id, USTR("helloX"), NULL); if (uri_id3 == uri_id || sord_node_equals(uri_id3, uri_id)) { fprintf(stderr, "Fail: URI interning failed (clash)\n"); goto fail; } else if (blank_id3 == blank_id || sord_node_equals(blank_id3, blank_id)) { fprintf(stderr, "Fail: Blank node interning failed (clash)\n"); goto fail; } else if (lit_id3 == lit_id || sord_node_equals(lit_id3, lit_id)) { fprintf(stderr, "Fail: Literal interning failed (clash)\n"); goto fail; } // Check literal interning SordNode* lit4 = sord_new_literal(world, NULL, USTR("hello"), NULL); SordNode* lit5 = sord_new_literal(world, uri_id2, USTR("hello"), NULL); SordNode* lit6 = sord_new_literal(world, NULL, USTR("hello"), "en-ca"); if (lit4 == lit5 || sord_node_equals(lit4, lit5) || lit4 == lit6 || sord_node_equals(lit4, lit6) || lit5 == lit6 || sord_node_equals(lit5, lit6)) { fprintf(stderr, "Fail: Literal interning failed (type/lang clash)\n"); goto fail; } // Check relative URI construction SordNode* reluri = sord_new_relative_uri( world, USTR("a/b"), USTR("http://example.org/")); if (strcmp((const char*)sord_node_get_string(reluri), "http://example.org/a/b")) { fprintf(stderr, "Fail: Bad relative URI constructed: <%s>\n", sord_node_get_string(reluri)); goto fail; } SordNode* reluri2 = sord_new_relative_uri( world, USTR("http://drobilla.net/"), USTR("http://example.org/")); if (strcmp((const char*)sord_node_get_string(reluri2), "http://drobilla.net/")) { fprintf(stderr, "Fail: Bad relative URI constructed: <%s>\n", sord_node_get_string(reluri)); goto fail; } // Check comparison with NULL sord_node_free(world, uri_id); sord_node_free(world, blank_id); sord_node_free(world, lit_id); sord_node_free(world, uri_id2); sord_node_free(world, blank_id2); sord_node_free(world, lit_id2); sord_node_free(world, uri_id3); sord_node_free(world, blank_id3); sord_node_free(world, lit_id3); sord_free(sord); static const char* const index_names[6] = { "spo", "sop", "ops", "osp", "pso", "pos" }; for (int i = 0; i < 6; ++i) { sord = sord_new(world, (1 << i), false); printf("Testing Index `%s'\n", index_names[i]); generate(world, sord, n_quads, 0); if (test_read(world, sord, 0, n_quads)) goto fail; sord_free(sord); } static const char* const graph_index_names[6] = { "gspo", "gsop", "gops", "gosp", "gpso", "gpos" }; for (int i = 0; i < 6; ++i) { sord = sord_new(world, (1 << i), true); printf("Testing Index `%s'\n", graph_index_names[i]); SordNode* graph = uri(world, 42); generate(world, sord, n_quads, graph); if (test_read(world, sord, graph, n_quads)) goto fail; sord_free(sord); } // Test removing sord = sord_new(world, SORD_SPO, false); tup[0] = uri(world, 1); tup[1] = uri(world, 2); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = 0; sord_add(sord, tup); if (!sord_ask(sord, tup[0], tup[1], tup[2], tup[3])) { fprintf(stderr, "Failed to add tuple\n"); goto fail; } sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, 0, USTR("hi"), NULL); sord_add(sord, tup); sord_remove(sord, tup); if (sord_num_quads(sord) != 1) { fprintf(stderr, "Removed failed (%zu quads, expected 1)\n", sord_num_quads(sord)); goto fail; } sord_free(sord); sord_world_free(world); return EXIT_SUCCESS; fail: sord_free(sord); sord_world_free(world); return EXIT_FAILURE; }