/*
An LV2 plugin to quantise an input to a set of fixed values.
Copyright 2011 David Robillard
Copyright 2003 Mike Rawes
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this software. If not, see .
*/
#include
#include
#include "lv2/lv2plug.in/ns/lv2core/lv2.h"
#include "math_func.h"
#include "common.h"
#define QUANTISER_RANGE_MIN 0
#define QUANTISER_RANGE_MAX 1
#define QUANTISER_MATCH_RANGE 2
#define QUANTISER_MODE 3
#define QUANTISER_COUNT 4
#define QUANTISER_VALUE_START 5
#define QUANTISER_INPUT (QUANTISER_MAX_INPUTS + 5)
#define QUANTISER_OUTPUT (QUANTISER_MAX_INPUTS + 6)
#define QUANTISER_OUTPUT_CHANGED (QUANTISER_MAX_INPUTS + 7)
typedef struct {
float* min;
float* max;
float* match_range;
float* mode;
float* count;
float* values[QUANTISER_MAX_INPUTS];
float* input;
float* output_changed;
float* output;
float svalues[QUANTISER_MAX_INPUTS + 2];
float temp[QUANTISER_MAX_INPUTS + 2];
float last_found;
} Quantiser;
/*
* f <= m <= l
*/
static inline void
merge(float* v,
int f,
int m,
int l,
float* temp)
{
int f1 = f;
int l1 = m;
int f2 = m + 1;
int l2 = l;
int i = f1;
while ((f1 <= l1) && (f2 <= l2)) {
if (v[f1] < v[f2]) {
temp[i] = v[f1];
f1++;
} else {
temp[i] = v[f2];
f2++;
}
i++;
}
while (f1 <= l1) {
temp[i] = v[f1];
f1++;
i++;
}
while (f2 <= l2) {
temp[i] = v[f2];
f2++;
i++;
}
for (i = f; i <= l; i++) {
v[i] = temp[i];
}
}
/*
* Recursive Merge Sort
* Sort elements in unsorted vector v
*/
static inline void
msort(float* v,
int f,
int l,
float* temp)
{
int m;
if (f < l) {
m = (f + l) / 2;
msort(v, f, m, temp);
msort(v, m + 1, l, temp);
merge(v, f, m, l, temp);
}
}
/*
* Binary search for nearest match to sought value in
* ordered vector v of given size
*/
static inline int
fuzzy_bsearch(float* v,
int size,
float sought)
{
int f = 0;
int l = size - 1;
int m = ((l - f) / 2);
while ((l - f) > 1) {
if (v[m] < sought) {
f = (l - f) / 2 + f;
} else {
l = (l - f) / 2 + f;
}
m = ((l - f) / 2 + f);
}
if (sought < v[m]) {
if (m > 0) {
if (FABSF(v[m] - sought) > FABSF(v[m - 1] - sought)) {
m--;
}
}
} else if (m < size - 1) {
if (FABSF(v[m] - sought) > FABSF(v[m + 1] - sought)) {
m++;
}
}
return m;
}
static void
cleanup(LV2_Handle instance)
{
free(instance);
}
static void
connect_port(LV2_Handle instance,
uint32_t port,
void* data)
{
Quantiser* plugin = (Quantiser*)instance;
switch (port) {
case QUANTISER_RANGE_MIN:
plugin->min = data;
break;
case QUANTISER_RANGE_MAX:
plugin->max = data;
break;
case QUANTISER_MATCH_RANGE:
plugin->match_range = data;
break;
case QUANTISER_MODE:
plugin->mode = data;
break;
case QUANTISER_COUNT:
plugin->count = data;
break;
case QUANTISER_INPUT:
plugin->input = data;
break;
case QUANTISER_OUTPUT:
plugin->output = data;
break;
case QUANTISER_OUTPUT_CHANGED:
plugin->output_changed = data;
break;
default:
if (port >= QUANTISER_VALUE_START && port < QUANTISER_OUTPUT) {
plugin->values[port - QUANTISER_VALUE_START] = data;
}
break;
}
}
static LV2_Handle
instantiate(const LV2_Descriptor* descriptor,
double sample_rate,
const char* bundle_path,
const LV2_Feature* const* features)
{
Quantiser* plugin = (Quantiser*)malloc(sizeof(Quantiser));
return (LV2_Handle)plugin;
}
#if 0
static void
runQuantiser_audio(LV2_Handle instance,
uint32_t sample_count)
{
Quantiser* plugin = (Quantiser*)instance;
/* Range Min (float value) */
float min = *(plugin->min);
/* Range Max (float value) */
float max = *(plugin->max);
/* Match Range (float value) */
float match_range = *(plugin->match_range);
/* Mode (float value) */
float mode = *(plugin->mode);
/* Count (float value) */
float count = *(plugin->count);
/* Input (array of float of length sample_count) */
float* input = plugin->input;
/* Values */
float* values[QUANTISER_MAX_INPUTS];
/* Output (array of float of length sample_count) */
float* output = plugin->output;
/* Output Changed (array of float of length sample_count) */
float* output_changed = plugin->output_changed;
for (uint32_t s = 0; s < sample_count; s++) {
output[s] = input[s];
}
}
#endif
static void
runQuantiser_control(LV2_Handle instance,
uint32_t sample_count)
{
Quantiser* plugin = (Quantiser*)instance;
/* Range Min (float value) */
float min = *(plugin->min);
/* Range Max (float value) */
float max = *(plugin->max);
/* Match Range (float value) */
float match_range = FABSF(*(plugin->match_range));
/* Mode (float value) */
float mode = *(plugin->mode);
/* Count (float value) */
float count = *(plugin->count);
/* Input (array of float of length sample_count) */
float* input = plugin->input;
/* Output (array of float of length sample_count) */
float* output = plugin->output;
/* Output Changed (array of float of length sample_count) */
float* output_changed = plugin->output_changed;
/* Instance Data */
float* temp = plugin->temp;
float* values = plugin->svalues;
float last_found = plugin->last_found;
int md = LRINTF(mode);
int n = LRINTF(count);
int i;
float in;
float out_changed;
float range;
float offset;
float found;
int found_index = 0;
/* Clip count if out of range */
n = n < 1 ? 1 : (n > QUANTISER_MAX_INPUTS ? QUANTISER_MAX_INPUTS : n);
/* Swap min and max if wrong way around */
if (min > max) {
range = min;
min = max;
max = range;
}
range = max - min;
/* Copy and sort required values */
for (i = 0; i < n; i++) {
values[i + 1] = *(plugin->values[i]);
}
msort(values, 1, n, temp);
/* Add wrapped extremes */
values[0] = values[n] - range;
values[n + 1] = values[1] + range;
if (md < 1) {
/* Extend mode */
for (uint32_t s = 0; s < sample_count; ++s) {
in = input[s];
if (range > 0.0f) {
if ((in < min) || (in > max)) {
offset = FLOORF((in - max) / range) + 1.0f;
offset *= range;
in -= offset;
/* Quantise */
found_index = fuzzy_bsearch(values, n + 2, in);
/* Wrapped */
if (found_index == 0) {
found_index = n;
offset -= range;
} else if (found_index == n + 1) {
found_index = 1;
offset += range;
}
found = values[found_index];
/* Allow near misses */
if (match_range > 0.0f) {
if (in < (found - match_range)) {
found -= match_range;
} else if (in > (found + match_range)) {
found += match_range;
}
}
found += offset;
} else {
/* Quantise */
found_index = fuzzy_bsearch(values, n + 2, in);
if (found_index == 0) {
found_index = n;
found = values[n] - range;
} else if (found_index == n + 1) {
found_index = 1;
found = values[1] + range;
} else {
found = values[found_index];
}
if (match_range > 0.0f) {
if (in < (found - match_range)) {
found -= match_range;
} else if (in > (found + match_range)) {
found += match_range;
}
}
}
} else {
/* Min and max the same, so only one value to quantise to */
found = min;
}
/* Has quantised output changed? */
if (FABSF(found - last_found) > 2.0001f * match_range) {
out_changed = 1.0f;
last_found = found;
} else {
out_changed = 0.0f;
}
output[s] = found;
output_changed[s] = out_changed;
}
} else if (md == 1) {
/* Wrap mode */
for (uint32_t s = 0; s < sample_count; ++s) {
in = input[s];
if (range > 0.0f) {
if ((in < min) || (in > max)) {
in -= (FLOORF((in - max) / range) + 1.0f) * range;
}
/* Quantise */
found_index = fuzzy_bsearch(values, n + 2, in);
if (found_index == 0) {
found_index = n;
} else if (found_index == n + 1) {
found_index = 1;
}
found = values[found_index];
/* Allow near misses */
if (match_range > 0.0f) {
if (in < (found - match_range)) {
found -= match_range;
} else if (in > (found + match_range)) {
found += match_range;
}
}
} else {
/* Min and max the same, so only one value to quantise to */
found = min;
}
/* Has quantised output changed? */
if (FABSF(found - last_found) > match_range) {
out_changed = 1.0f;
last_found = found;
} else {
out_changed = 0.0f;
}
output[s] = found;
output_changed[s] = out_changed;
}
} else {
/* Clip mode */
for (uint32_t s = 0; s < sample_count; ++s) {
in = input[s];
if (range > 0.0f) {
/* Clip to range */
if (in < min) {
found_index = 1;
} else if (in > max) {
found_index = n;
} else {
/* Quantise */
found_index = fuzzy_bsearch(values + 1, n, in) + 1;
}
found = values[found_index];
/* Allow near misses */
if (match_range > 0.0f) {
if (in < (found - match_range)) {
found -= match_range;
} else if (in > (found + match_range)) {
found += match_range;
}
}
} else {
/* Min and max the same, so only one value to quantise to */
found = min;
}
/* Has quantised output changed? */
if (FABSF(found - last_found) > match_range) {
out_changed = 1.0f;
last_found = found;
} else {
out_changed = 0.0f;
}
output[s] = found;
output_changed[s] = out_changed;
}
}
plugin->last_found = last_found;
}