/* * Copyright (C) 2006-2007 Chris Hamilton * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _ALGORITHM_HPP_ #define _ALGORITHM_HPP_ #include #include #include #include #include #include #include // Templated Hilbert functions. // P - is the class used to represent each dimension // of a multidimensional point. // H - is the class used to represent the point as a Hilbert // index. // I - is the class used to represent interim variables. // Needs to have as many bits as there are dimensions. // // In general, each of P,H,I should be a FixBitVec if they // fit in that fixed precision. Otherwise, use a BigBitVec. // Whatever you use, they must all be of consistent underlying // storage types. // The dimension across which the Hilbert curve travels // principally. // D0 is d + 1, where d is the actual dimension you want to // walk across. // MUST HAVE 0 <= D0 < n #define D0 1 namespace Hilbert { // 'Transforms' a point. template inline void transform( const I &e, int d, int n, I &a ) { a ^= e; a.rotr( d, n );//#D d+1, n ); return; } // Inverse 'transforms' a point. template inline void transformInv( const I &e, int d, int n, I &a ) { a.rotl( d, n );//#D d+1, n ); a ^= e; return; } // Update for method 1 (GrayCodeInv in the loop) template inline void update1( const I &l, const I &t, const I &w, int n, I &e, int &d ) { assert( 0 <= d && d < n ); e = l; e.toggle( d ); //#D d == n-1 ? 0 : d+1 ); // Update direction d += 1 + t.fsb(); if ( d >= n ) d -= n; if ( d >= n ) d -= n; assert( 0 <= d && d < n ); if ( ! (w.rack() & 1) ) e.toggle( d == 0 ? n-1 : d-1 ); //#D d ); return; } // Update for method 2 (GrayCodeInv out of loop) template inline void update2( const I &l, const I &t, const I &w, int n, I &e, int &d ) { assert( 0 <= d && d < n ); e = l; e.toggle( d );//#D d == n-1 ? 0 : d+1 ); // Update direction d += 1 + t.fsb(); if ( d >= n ) d -= n; if ( d >= n ) d -= n; assert( 0 <= d && d < n ); return; } template inline void _coordsToIndex( const P *p, int m, int n, H &h, int *ds = nullptr // #HACK ) { I e(n), l(n), t(n), w(n); int d, i; int ho = m*n; // Initialize e.reset(); d = D0; l.reset(); h.reset(); // Work from MSB to LSB for ( i = m-1; i >= 0; i-- ) { // #HACK if ( ds ) ds[i] = d; // Get corner of sub-hypercube where point lies. getLocation(p,n,i,l); // Mirror and reflect the location. // t = T_{(e,d)}(l) t = l; transform(e,d,n,t); w = t; if ( i < m-1 ) w.toggle(n - 1); // Concatenate to the index. ho -= n; setBits(h,n,ho,w); // Update the entry point and direction. update2(l,t,w,n,e,d); } h.grayCodeInv(); return; } // This is wrapper to the basic Hilbert curve index // calculation function. It will support fixed or // arbitrary precision, templated. Depending on the // number of dimensions, it will use the most efficient // representation for interim variables. // Assumes h is big enough for the output (n*m bits!) template inline void coordsToIndex( const P *p, // [in ] point int m, // [in ] precision of each dimension in bits int n, // [in ] number of dimensions H &h // [out] Hilbert index ) { // Intermediate variables will fit in fixed width? if ( n <= FBV_BITS ) _coordsToIndex(p,m,n,h); // Otherwise, they must be BigBitVecs. else _coordsToIndex(p,m,n,h); return; } template inline void _indexToCoords( P *p, int m, int n, const H &h ) { I e(n), l(n), t(n), w(n); int d, i, j, ho; // Initialize e.reset(); d = D0; l.reset(); for ( j = 0; j < n; j++ ) p[j] = 0; ho = m*n; // Work from MSB to LSB for ( i = m-1; i >= 0; i-- ) { // Get the Hilbert index bits ho -= n; getBits(h,n,ho,w); // t = GrayCode(w) t = w; t.grayCode(); // Reverse the transform // l = T^{-1}_{(e,d)}(t) l = t; transformInv(e,d,n,l); // Distribute these bits // to the coordinates. setLocation(p,n,i,l); // Update the entry point and direction. update1(l,t,w,n,e,d); } return; } // This is wrapper to the basic Hilbert curve inverse // index function. It will support fixed or // arbitrary precision, templated. Depending on the // number of dimensions, it will use the most efficient // representation for interim variables. // Assumes each entry of p is big enough to hold the // appropriate variable. template inline void indexToCoords( P *p, // [out] point int m, // [in ] precision of each dimension in bits int n, // [in ] number of dimensions const H &h // [out] Hilbert index ) { // Intermediate variables will fit in fixed width? if ( n <= FBV_BITS ) _indexToCoords(p,m,n,h); // Otherwise, they must be BigBitVecs. else _indexToCoords(p,m,n,h); return; } template inline void _coordsToCompactIndex( const P *p, const int *ms, int n, HC &hc, int M = 0, int m = 0 ) { int i, mn; int *ds; // Get total precision and max precision // if not supplied if ( M == 0 || m == 0 ) { M = m = 0; for ( i = 0; i < n; i++ ) { if ( ms[i] > m ) m = ms[i]; M += ms[i]; } } mn = m*n; // If we could avoid allocation altogether (ie: have a // fixed buffer allocated on the stack) then this increases // speed by a bit (4% when n=4, m=20) ds = new int [ m ]; if ( mn > FBV_BITS ) { CBigBitVec h(mn); _coordsToIndex(p,m,n,h,ds); compactIndex(ms,ds,n,m,h,hc); } else { CFixBitVec h; _coordsToIndex(p,m,n,h,ds); compactIndex(ms,ds,n,m,h,hc); } delete [] ds; return; } // This is wrapper to the basic Hilbert curve index // calculation function. It will support fixed or // arbitrary precision, templated. Depending on the // number of dimensions, it will use the most efficient // representation for interim variables. // Assumes h is big enough for the output (n*m bits!) template inline void coordsToCompactIndex( const P *p, // [in ] point const int *ms,// [in ] precision of each dimension in bits int n, // [in ] number of dimensions HC &hc, // [out] Hilbert index int M = 0, int m = 0 ) { // Intermediate variables will fit in fixed width? if ( n <= FBV_BITS ) _coordsToCompactIndex(p,ms,n,hc,M,m); // Otherwise, they must be BigBitVecs. else _coordsToCompactIndex(p,ms,n,hc,M,m); return; } template inline void _compactIndexToCoords( P *p, const int *ms, int n, const HC &hc, int M = 0, int m = 0 ) { I e(n), l(n), t(n), w(n), r(n), mask(n), ptrn(n); int d, i, j, b; // Get total precision and max precision // if not supplied if ( M == 0 || m == 0 ) { M = m = 0; for ( i = 0; i < n; i++ ) { if ( ms[i] > m ) m = ms[i]; M += ms[i]; } } // Initialize e.reset(); d = D0; l.reset(); for ( j = 0; j < n; j++ ) p[j].reset(); // Work from MSB to LSB for ( i = m-1; i >= 0; i-- ) { // Get the mask and ptrn extractMask(ms,n,d,i,mask,b); ptrn = e; ptrn.rotr(d,n);//#D ptrn.Rotr(d+1,n); // Get the Hilbert index bits M -= b; r.reset(); // GetBits doesn't do this getBits(hc,b,M,r); // w = GrayCodeRankInv(r) // t = GrayCode(w) grayCodeRankInv(mask,ptrn,r,n,b,t,w); // Reverse the transform // l = T^{-1}_{(e,d)}(t) l = t; transformInv(e,d,n,l); // Distribute these bits // to the coordinates. setLocation(p,n,i,l); // Update the entry point and direction. update1(l,t,w,n,e,d); } return; } // This is wrapper to the basic Hilbert curve inverse // index function. It will support fixed or // arbitrary precision, templated. Depending on the // number of dimensions, it will use the most efficient // representation for interim variables. // Assumes each entry of p is big enough to hold the // appropriate variable. template inline void compactIndexToCoords( P *p, // [out] point const int *ms,// [in ] precision of each dimension in bits int n, // [in ] number of dimensions const HC &hc, // [out] Hilbert index int M = 0, int m = 0 ) { // Intermediate variables will fit in fixed width? if ( n <= FBV_BITS ) _compactIndexToCoords(p,ms,n,hc,M,m); // Otherwise, they must be BigBitVecs. else _compactIndexToCoords(p,ms,n,hc,M,m); return; } }; #endif