summaryrefslogtreecommitdiffstats
path: root/gst/nsf/nes6502.c
diff options
context:
space:
mode:
authorWim Taymans <wim.taymans@gmail.com>2006-07-13 15:07:28 +0000
committerWim Taymans <wim.taymans@gmail.com>2006-07-13 15:07:28 +0000
commitaae22fa1c92df5ee70fa478f831c64287344879c (patch)
tree82d1b83aff375d2ab6b0d09427560550c1b7db1e /gst/nsf/nes6502.c
parent9d2c04267dec2eda43a150b2541d5c5a0f9eaf18 (diff)
downloadgst-plugins-bad-aae22fa1c92df5ee70fa478f831c64287344879c.tar.gz
gst-plugins-bad-aae22fa1c92df5ee70fa478f831c64287344879c.tar.bz2
gst-plugins-bad-aae22fa1c92df5ee70fa478f831c64287344879c.zip
Added NSF decoder plugin. Fixes 151192.
Original commit message from CVS: Based on patches by: Johan Dahlin <johan at gnome dot org> Ronald Bultje <rbultje at ronald dot bitfreak dot net> * configure.ac: * gst/nsf/Makefile.am: * gst/nsf/dis6502.h: * gst/nsf/fds_snd.c: * gst/nsf/fds_snd.h: * gst/nsf/fmopl.c: * gst/nsf/fmopl.h: * gst/nsf/gstnsf.c: * gst/nsf/gstnsf.h: * gst/nsf/log.c: * gst/nsf/log.h: * gst/nsf/memguard.c: * gst/nsf/memguard.h: * gst/nsf/mmc5_snd.c: * gst/nsf/mmc5_snd.h: * gst/nsf/nes6502.c: * gst/nsf/nes6502.h: * gst/nsf/nes_apu.c: * gst/nsf/nes_apu.h: * gst/nsf/nsf.c: * gst/nsf/nsf.h: * gst/nsf/osd.h: * gst/nsf/types.h: * gst/nsf/vrc7_snd.c: * gst/nsf/vrc7_snd.h: * gst/nsf/vrcvisnd.c: * gst/nsf/vrcvisnd.h: Added NSF decoder plugin. Fixes 151192.
Diffstat (limited to 'gst/nsf/nes6502.c')
-rw-r--r--gst/nsf/nes6502.c2438
1 files changed, 2438 insertions, 0 deletions
diff --git a/gst/nsf/nes6502.c b/gst/nsf/nes6502.c
new file mode 100644
index 00000000..c677a5ae
--- /dev/null
+++ b/gst/nsf/nes6502.c
@@ -0,0 +1,2438 @@
+/*
+** Nofrendo (c) 1998-2000 Matthew Conte (matt@conte.com)
+**
+**
+** This program is free software; you can redistribute it and/or
+** modify it under the terms of version 2 of the GNU Library General
+** Public License as published by the Free Software Foundation.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+** Library General Public License for more details. To obtain a
+** copy of the GNU Library General Public License, write to the Free
+** Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+**
+** Any permitted reproduction of these routines, in whole or in part,
+** must bear this legend.
+**
+**
+** nes6502.c
+**
+** NES custom 6502 (2A03) CPU implementation
+** $Id$
+*/
+
+
+#include "types.h"
+#include "nes6502.h"
+#include "dis6502.h"
+#include <stdio.h>
+
+
+#define ADD_CYCLES(x) instruction_cycles += (x)
+#define INC_CYCLES() instruction_cycles++
+/* #define ADD_CYCLES(x) remaining_cycles -= (x) */
+/* #define INC_CYCLES() remaining_cycles-- */
+
+/*
+** Check to see if an index reg addition overflowed to next page
+*/
+#define CHECK_INDEX_OVERFLOW(addr, reg) \
+{ \
+ if ((uint8) (addr) < (reg)) \
+ INC_CYCLES(); \
+}
+
+/*
+** Addressing mode macros
+*/
+
+#define NO_READ(value) /* empty */
+
+#define IMMEDIATE_BYTE(value) \
+{ \
+ value = bank_readbyte(PC++); \
+}
+
+
+#define ABSOLUTE_ADDR(address) \
+{ \
+ address = bank_readaddress(PC); \
+ PC += 2; \
+}
+
+#define ABSOLUTE(address, value) \
+{ \
+ ABSOLUTE_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define ABSOLUTE_BYTE(value) \
+{ \
+ ABSOLUTE(temp, value); \
+}
+
+#define ABS_IND_X_ADDR(address) \
+{ \
+ address = (bank_readaddress(PC) + X) & 0xFFFF; \
+ PC += 2; \
+ CHECK_INDEX_OVERFLOW(address, X); \
+}
+
+#define ABS_IND_X(address, value) \
+{ \
+ ABS_IND_X_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define ABS_IND_X_BYTE(value) \
+{ \
+ ABS_IND_X(temp, value); \
+}
+
+#define ABS_IND_Y_ADDR(address) \
+{ \
+ address = (bank_readaddress(PC) + Y) & 0xFFFF; \
+ PC += 2; \
+ CHECK_INDEX_OVERFLOW(address, Y); \
+}
+
+#define ABS_IND_Y(address, value) \
+{ \
+ ABS_IND_Y_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define ABS_IND_Y_BYTE(value) \
+{ \
+ ABS_IND_Y(temp, value); \
+}
+
+#define ZERO_PAGE_ADDR(address) \
+{ \
+ IMMEDIATE_BYTE(address); \
+}
+
+#define ZERO_PAGE(address, value) \
+{ \
+ ZERO_PAGE_ADDR(address); \
+ value = ZP_READ(address); \
+}
+
+#define ZERO_PAGE_BYTE(value) \
+{ \
+ ZERO_PAGE(btemp, value); \
+}
+
+/* Zero-page indexed Y doesn't really exist, just for LDX / STX */
+#define ZP_IND_X_ADDR(address) \
+{ \
+ address = bank_readbyte(PC++) + X; \
+}
+
+#define ZP_IND_X(bAddr, value) \
+{ \
+ ZP_IND_X_ADDR(bAddr); \
+ value = ZP_READ(bAddr); \
+}
+
+#define ZP_IND_X_BYTE(value) \
+{ \
+ ZP_IND_X(btemp, value); \
+}
+
+#define ZP_IND_Y_ADDR(address) \
+{ \
+ address = bank_readbyte(PC++) + Y; \
+}
+
+#define ZP_IND_Y(address, value) \
+{ \
+ ZP_IND_Y_ADDR(address); \
+ value = ZP_READ(address); \
+}
+
+#define ZP_IND_Y_BYTE(value) \
+{ \
+ ZP_IND_Y(btemp, value); \
+}
+
+/*
+** For conditional jump relative instructions
+** (BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS)
+*/
+#define RELATIVE_JUMP(cond) \
+{ \
+ if (cond) \
+ { \
+ IMMEDIATE_BYTE(btemp); \
+ if (((int8) btemp + (uint8) PC) & 0xFF00) \
+ ADD_CYCLES(4); \
+ else \
+ ADD_CYCLES(3); \
+ PC += ((int8) btemp); \
+ } \
+ else \
+ { \
+ PC++; \
+ ADD_CYCLES(2); \
+ } \
+}
+
+/*
+** This is actually indexed indirect, but I call it
+** indirect X to avoid confusion
+*/
+#define INDIR_X_ADDR(address) \
+{ \
+ btemp = bank_readbyte(PC++) + X; \
+ address = zp_address(btemp); \
+}
+
+#define INDIR_X(address, value) \
+{ \
+ INDIR_X_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define INDIR_X_BYTE(value) \
+{ \
+ INDIR_X(temp, value); \
+}
+
+/*
+** This is actually indirect indexed, but I call it
+** indirect y to avoid confusion
+*/
+#define INDIR_Y_ADDR(address) \
+{ \
+ IMMEDIATE_BYTE(btemp); \
+ address = (zp_address(btemp) + Y) & 0xFFFF; \
+ /* ???? */ \
+ CHECK_INDEX_OVERFLOW(address, Y); \
+}
+
+#define INDIR_Y(address, value) \
+{ \
+ INDIR_Y_ADDR(address); \
+ value = mem_read(address); \
+}
+
+#define INDIR_Y_BYTE(value) \
+{ \
+ /*IMMEDIATE_BYTE(btemp); \
+ temp = zp_address(btemp) + Y; \
+ CHECK_INDEX_OVERFLOW(temp, Y); \
+ value = mem_read(temp);*/ \
+ INDIR_Y(temp, value); \
+}
+
+
+#define JUMP(address) PC = bank_readaddress((address))
+
+/*
+** Interrupt macros
+*/
+#define NMI() \
+{ \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ CLEAR_FLAG(B_FLAG); \
+ PUSH(P); \
+ SET_FLAG(I_FLAG); \
+ JUMP(NMI_VECTOR); \
+ int_pending &= ~NMI_MASK; \
+ ADD_CYCLES(INT_CYCLES); \
+}
+
+#define IRQ() \
+{ \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ CLEAR_FLAG(B_FLAG); \
+ PUSH(P); \
+ SET_FLAG(I_FLAG); \
+ JUMP(IRQ_VECTOR); \
+ int_pending &= ~IRQ_MASK; \
+ ADD_CYCLES(INT_CYCLES); \
+}
+
+/*
+** Instruction macros
+*/
+
+/* Warning! NES CPU has no decimal mode, so by default this does no BCD! */
+#ifdef NES6502_DECIMAL
+#define ADC(cycles, read_func) \
+{ \
+ read_func(data); \
+ if (P & D_FLAG) \
+ { \
+ temp = (A & 0x0F) + (data & 0x0F) + (P & C_FLAG); \
+ if (temp >= 10) \
+ temp = (temp - 10) | 0x10; \
+ temp += (A & 0xF0) + (data & 0xF0); \
+ TEST_AND_FLAG(0 == ((A + data + (P & C_FLAG)) & 0xFF), Z_FLAG); \
+ TEST_AND_FLAG(temp & 0x80, N_FLAG); \
+ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \
+ if (temp > 0x9F) \
+ temp += 0x60; \
+ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \
+ A = (uint8) temp; \
+ } \
+ else \
+ { \
+ temp = A + data + (P & C_FLAG); \
+ /* Set C on carry */ \
+ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \
+ /* Set V on overflow */ \
+ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A); \
+ }\
+ ADD_CYCLES(cycles); \
+}
+#else
+#define ADC(cycles, read_func) \
+{ \
+ read_func(data); \
+ temp = A + data + (P & C_FLAG); \
+ /* Set C on carry */ \
+ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \
+ /* Set V on overflow */ \
+ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+#endif /* NES6502_DECIMAL */
+
+/* undocumented */
+#define ANC(cycles, read_func) \
+{ \
+ read_func(data); \
+ A &= data; \
+ SET_NZ_FLAGS(A); \
+ TEST_AND_FLAG(P & N_FLAG, C_FLAG); \
+ ADD_CYCLES(cycles); \
+}
+
+#define AND(cycles, read_func) \
+{ \
+ read_func(data); \
+ A &= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define ANE(cycles, read_func) \
+{ \
+ read_func(data); \
+ A = (A | 0xEE) & X & data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#ifdef NES6502_DECIMAL
+#define ARR(cycles, read_func) \
+{ \
+ read_func(data); \
+ data &= A; \
+ if (P & D_FLAG) \
+ { \
+ temp = (data >> 1) | ((P & C_FLAG) << 7); \
+ SET_NZ_FLAGS(temp); \
+ TEST_AND_FLAG((temp ^ data) & 0x40, V_FLAG); \
+ if (((data & 0x0F) + (data & 0x01)) > 5) \
+ temp = (temp & 0xF0) | ((temp + 0x6) & 0x0F); \
+ if (((data & 0xF0) + (data & 0x10)) > 0x50) \
+ { \
+ temp = (temp & 0x0F) | ((temp + 0x60) & 0xF0); \
+ SET_FLAG(C_FLAG); \
+ } \
+ else \
+ CLEAR_FLAG(C_FLAG); \
+ A = (uint8) temp; \
+ } \
+ else \
+ { \
+ A = (data >> 1) | ((P & C_FLAG) << 7); \
+ SET_NZ_FLAGS(A); \
+ TEST_AND_FLAG(A & 0x40, C_FLAG); \
+ TEST_AND_FLAG(((A >> 6) ^ (A >> 5)) & 1, V_FLAG); \
+ }\
+ ADD_CYCLES(cycles); \
+}
+#else
+#define ARR(cycles, read_func) \
+{ \
+ read_func(data); \
+ data &= A; \
+ A = (data >> 1) | ((P & C_FLAG) << 7); \
+ SET_NZ_FLAGS(A); \
+ TEST_AND_FLAG(A & 0x40, C_FLAG); \
+ TEST_AND_FLAG((A >> 6) ^ (A >> 5), V_FLAG); \
+ ADD_CYCLES(cycles); \
+}
+#endif /* NES6502_DECIMAL */
+
+#define ASL(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define ASL_A() \
+{ \
+ TEST_AND_FLAG(A & 0x80, C_FLAG); \
+ A <<= 1; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define ASR(cycles, read_func) \
+{ \
+ read_func(data); \
+ data &= A; \
+ TEST_AND_FLAG(data & 0x01, C_FLAG); \
+ A = data >> 1; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define BCC() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(C_FLAG))); \
+}
+
+#define BCS() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(C_FLAG))); \
+}
+
+#define BEQ() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(Z_FLAG))); \
+}
+
+#define BIT(cycles, read_func) \
+{ \
+ read_func(data); \
+ TEST_AND_FLAG(0 == (data & A), Z_FLAG);\
+ CLEAR_FLAG(N_FLAG | V_FLAG); \
+ /* move bit 7/6 of data into N/V flags */ \
+ SET_FLAG(data & (N_FLAG | V_FLAG)); \
+ ADD_CYCLES(cycles); \
+}
+
+#define BMI() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(N_FLAG))); \
+}
+
+#define BNE() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(Z_FLAG))); \
+}
+
+#define BPL() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(N_FLAG))); \
+}
+
+/* Software interrupt type thang */
+#define BRK() \
+{ \
+ PC++; \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ SET_FLAG(B_FLAG); \
+ PUSH(P); \
+ SET_FLAG(I_FLAG); \
+ JUMP(IRQ_VECTOR); \
+ ADD_CYCLES(7); \
+}
+
+#define BVC() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_CLEAR(V_FLAG))); \
+}
+
+#define BVS() \
+{ \
+ RELATIVE_JUMP((IS_FLAG_SET(V_FLAG))); \
+}
+
+#define CLC() \
+{ \
+ CLEAR_FLAG(C_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define CLD() \
+{ \
+ CLEAR_FLAG(D_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define CLI() \
+{ \
+ CLEAR_FLAG(I_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define CLV() \
+{ \
+ CLEAR_FLAG(V_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+/* TODO: ick! */
+#define _COMPARE(reg, value) \
+{ \
+ temp = (reg) - (value); \
+ /* C is clear when data > A */ \
+ TEST_AND_FLAG(0 == (temp & 0x8000), C_FLAG); \
+ SET_NZ_FLAGS((uint8) temp); /* handles Z flag */ \
+}
+
+#define CMP(cycles, read_func) \
+{ \
+ read_func(data); \
+ _COMPARE(A, data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define CPX(cycles, read_func) \
+{ \
+ read_func(data); \
+ _COMPARE(X, data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define CPY(cycles, read_func) \
+{ \
+ read_func(data); \
+ _COMPARE(Y, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define DCP(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data--; \
+ write_func(addr, data); \
+ CMP(cycles, NO_READ); \
+}
+
+#define DEC(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data--; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define DEX() \
+{ \
+ X--; \
+ SET_NZ_FLAGS(X); \
+ ADD_CYCLES(2); \
+}
+
+#define DEY() \
+{ \
+ Y--; \
+ SET_NZ_FLAGS(Y); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented (double-NOP) */
+#define DOP(cycles) \
+{ \
+ PC++; \
+ ADD_CYCLES(cycles); \
+}
+
+#define EOR(cycles, read_func) \
+{ \
+ read_func(data); \
+ A ^= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define INC(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data++; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define INX() \
+{ \
+ X++; \
+ SET_NZ_FLAGS(X); \
+ ADD_CYCLES(2); \
+}
+
+#define INY() \
+{ \
+ Y++; \
+ SET_NZ_FLAGS(Y); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define ISB(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ data++; \
+ write_func(addr, data); \
+ SBC(cycles, NO_READ); \
+}
+
+#ifdef NES6502_TESTOPS
+#define JAM() \
+{ \
+ cpu_Jam(); \
+}
+#elif defined(NSF_PLAYER)
+#define JAM() \
+{ \
+}
+#else
+#define JAM() \
+{ \
+ char jambuf[20]; \
+ sprintf(jambuf, "JAM: PC=$%04X", PC); \
+ ASSERT_MSG(jambuf); \
+ ADD_CYCLES(2); \
+}
+#endif /* NES6502_TESTOPS */
+
+#define JMP_INDIRECT() \
+{ \
+ temp = bank_readaddress(PC); \
+ /* bug in crossing page boundaries */ \
+ if (0xFF == (uint8) temp) \
+ PC = (bank_readbyte(temp & ~0xFF) << 8) | bank_readbyte(temp); \
+ else \
+ JUMP(temp); \
+ ADD_CYCLES(5); \
+}
+
+#define JMP_ABSOLUTE() \
+{ \
+ JUMP(PC); \
+ ADD_CYCLES(3); \
+}
+
+#define JSR() \
+{ \
+ PC++; \
+ PUSH(PC >> 8); \
+ PUSH(PC & 0xFF); \
+ JUMP(PC - 1); \
+ ADD_CYCLES(6); \
+}
+
+/* undocumented */
+#define LAS(cycles, read_func) \
+{ \
+ read_func(data); \
+ A = X = S = (S & data); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define LAX(cycles, read_func) \
+{ \
+ read_func(A); \
+ X = A; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define LDA(cycles, read_func) \
+{ \
+ read_func(A); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define LDX(cycles, read_func) \
+{ \
+ read_func(X); \
+ SET_NZ_FLAGS(X);\
+ ADD_CYCLES(cycles); \
+}
+
+#define LDY(cycles, read_func) \
+{ \
+ read_func(Y); \
+ SET_NZ_FLAGS(Y);\
+ ADD_CYCLES(cycles); \
+}
+
+#define LSR(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 0x01, C_FLAG); \
+ data >>= 1; \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define LSR_A() \
+{ \
+ TEST_AND_FLAG(A & 0x01, C_FLAG); \
+ A >>= 1; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define LXA(cycles, read_func) \
+{ \
+ read_func(data); \
+ A = X = ((A | 0xEE) & data); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define NOP() \
+{ \
+ ADD_CYCLES(2); \
+}
+
+#define ORA(cycles, read_func) \
+{ \
+ read_func(data); \
+ A |= data; \
+ SET_NZ_FLAGS(A);\
+ ADD_CYCLES(cycles); \
+}
+
+#define PHA() \
+{ \
+ PUSH(A); \
+ ADD_CYCLES(3); \
+}
+
+#define PHP() \
+{ \
+ /* B flag is pushed on stack as well */ \
+ PUSH((P | B_FLAG)); \
+ ADD_CYCLES(3); \
+}
+
+#define PLA() \
+{ \
+ A = PULL(); \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(4); \
+}
+
+#define PLP() \
+{ \
+ P = PULL(); \
+ SET_FLAG(R_FLAG); /* ensure reserved flag is set */ \
+ ADD_CYCLES(4); \
+}
+
+/* undocumented */
+#define RLA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data = (data << 1) | 1; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ } \
+ write_func(addr, data); \
+ A &= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* 9-bit rotation (carry flag used for rollover) */
+#define ROL(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data = (data << 1) | 1; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ } \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define ROL_A() \
+{ \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(A & 0x80, C_FLAG); \
+ A = (A << 1) | 1; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(A & 0x80, C_FLAG); \
+ A <<= 1; \
+ } \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+#define ROR(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data = (data >> 1) | 0x80; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data >>= 1; \
+ } \
+ write_func(addr, data); \
+ SET_NZ_FLAGS(data); \
+ ADD_CYCLES(cycles); \
+}
+
+#define ROR_A() \
+{ \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(A & 1, C_FLAG); \
+ A = (A >> 1) | 0x80; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(A & 1, C_FLAG); \
+ A >>= 1; \
+ } \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define RRA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ if (P & C_FLAG) \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data = (data >> 1) | 0x80; \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data >>= 1; \
+ } \
+ write_func(addr, data); \
+ ADC(cycles, NO_READ); \
+}
+
+#define RTI() \
+{ \
+ P = PULL(); \
+ SET_FLAG(R_FLAG); /* ensure reserved flag is set */ \
+ PC = PULL(); \
+ PC |= PULL() << 8; \
+ ADD_CYCLES(6); \
+}
+
+#define RTS() \
+{ \
+ PC = PULL(); \
+ PC = (PC | (PULL() << 8)) + 1; \
+ ADD_CYCLES(6); \
+}
+
+/* undocumented */
+#define SAX(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = A & X; \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* Warning! NES CPU has no decimal mode, so by default this does no BCD! */
+#ifdef NES6502_DECIMAL
+#define SBC(cycles, read_func) \
+{ \
+ read_func(data); \
+ /* NOT(C) is considered borrow */ \
+ temp = A - data - ((P & C_FLAG) ^ C_FLAG); \
+ if (P & D_FLAG) \
+ { \
+ uint8 al, ah; \
+ al = (A & 0x0F) - (data & 0x0F) - ((P & C_FLAG) ^ C_FLAG); \
+ ah = (A >> 4) - (data >> 4); \
+ if (al & 0x10) \
+ { \
+ al -= 6; \
+ ah--; \
+ } \
+ if (ah & 0x10) \
+ ah -= 6; \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ TEST_AND_FLAG(((A ^ temp) & 0x80) && ((A ^ data) & 0x80), V_FLAG); \
+ SET_NZ_FLAGS(temp & 0xFF); \
+ A = (ah << 4) | (al & 0x0F); \
+ } \
+ else \
+ { \
+ TEST_AND_FLAG(((A ^ temp) & 0x80) && ((A ^ data) & 0x80), V_FLAG); \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A & 0xFF); \
+ } \
+ ADD_CYCLES(cycles); \
+}
+#else
+#define SBC(cycles, read_func) \
+{ \
+ read_func(data); \
+ temp = A - data - ((P & C_FLAG) ^ C_FLAG); \
+ TEST_AND_FLAG(((A ^ data) & (A ^ temp) & 0x80), V_FLAG); \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ A = (uint8) temp; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+#endif /* NES6502_DECIMAL */
+
+/* undocumented */
+#define SBX(cycles, read_func) \
+{ \
+ read_func(data); \
+ temp = (A & X) - data; \
+ TEST_AND_FLAG(temp < 0x100, C_FLAG); \
+ X = temp & 0xFF; \
+ SET_NZ_FLAGS(X); \
+ ADD_CYCLES(cycles); \
+}
+
+#define SEC() \
+{ \
+ SET_FLAG(C_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define SED() \
+{ \
+ SET_FLAG(D_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+#define SEI() \
+{ \
+ SET_FLAG(I_FLAG); \
+ ADD_CYCLES(2); \
+}
+
+/* undocumented */
+#define SHA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = A & X & ((uint8) ((addr >> 8) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SHS(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ S = A & X; \
+ data = S & ((uint8) ((addr >> 8) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SHX(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = X & ((uint8) ((addr >> 8) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SHY(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ data = Y & ((uint8) ((addr >> 8 ) + 1)); \
+ write_func(addr, data); \
+ ADD_CYCLES(cycles); \
+}
+
+/* undocumented */
+#define SLO(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 0x80, C_FLAG); \
+ data <<= 1; \
+ write_func(addr, data); \
+ A |= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+/* unoffical */
+#define SRE(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr, data); \
+ TEST_AND_FLAG(data & 1, C_FLAG); \
+ data >>= 1; \
+ write_func(addr, data); \
+ A ^= data; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define STA(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ write_func(addr, A); \
+ ADD_CYCLES(cycles); \
+}
+
+#define STX(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ write_func(addr, X); \
+ ADD_CYCLES(cycles); \
+}
+
+#define STY(cycles, read_func, write_func, addr) \
+{ \
+ read_func(addr); \
+ write_func(addr, Y); \
+ ADD_CYCLES(cycles); \
+}
+
+#define TAX() \
+{ \
+ X = A; \
+ SET_NZ_FLAGS(X);\
+ ADD_CYCLES(2); \
+}
+
+#define TAY() \
+{ \
+ Y = A; \
+ SET_NZ_FLAGS(Y);\
+ ADD_CYCLES(2); \
+}
+
+/* undocumented (triple-NOP) */
+#define TOP() \
+{ \
+ PC += 2; \
+ ADD_CYCLES(4); \
+}
+
+#define TSX() \
+{ \
+ X = S; \
+ SET_NZ_FLAGS(X);\
+ ADD_CYCLES(2); \
+}
+
+#define TXA() \
+{ \
+ A = X; \
+ SET_NZ_FLAGS(A);\
+ ADD_CYCLES(2); \
+}
+
+#define TXS() \
+{ \
+ S = X; \
+ ADD_CYCLES(2); \
+}
+
+#define TYA() \
+{ \
+ A = Y; \
+ SET_NZ_FLAGS(A); \
+ ADD_CYCLES(2); \
+}
+
+
+/*
+** Stack and data fetching macros
+*/
+
+/* Set/clear/test bits in the flags register */
+#define SET_FLAG(mask) P |= (mask)
+#define CLEAR_FLAG(mask) P &= ~(mask)
+#define IS_FLAG_SET(mask) (P & (mask))
+#define IS_FLAG_CLEAR(mask) (0 == IS_FLAG_SET((mask)))
+
+#define TEST_AND_FLAG(test, mask) \
+{ \
+ if ((test)) \
+ SET_FLAG((mask)); \
+ else \
+ CLEAR_FLAG((mask)); \
+}
+
+
+/*
+** flag register helper macros
+*/
+
+/* register push/pull */
+#define PUSH(value) stack_page[S--] = (uint8) (value)
+#define PULL() stack_page[++S]
+
+/* Sets the Z and N flags based on given data, taken from precomputed table */
+#define SET_NZ_FLAGS(value) P &= ~(N_FLAG | Z_FLAG); \
+ P |= flag_table[(value)]
+
+#define GET_GLOBAL_REGS() \
+{ \
+ PC = reg_PC; \
+ A = reg_A; \
+ X = reg_X; \
+ Y = reg_Y; \
+ P = reg_P; \
+ S = reg_S; \
+}
+
+#define SET_LOCAL_REGS() \
+{ \
+ reg_PC = PC; \
+ reg_A = A; \
+ reg_X = X; \
+ reg_Y = Y; \
+ reg_P = P; \
+ reg_S = S; \
+}
+
+
+/* static data */
+static nes6502_memread *pmem_read, *pmr;
+static nes6502_memwrite *pmem_write, *pmw;
+
+/* lookup table for N/Z flags */
+static uint8 flag_table[256];
+
+/* internal critical CPU vars */
+static uint32 reg_PC;
+static uint8 reg_A, reg_P, reg_X, reg_Y, reg_S;
+static uint8 int_pending;
+static int dma_cycles;
+
+/* execution cycle count (can be reset by user) */
+static uint32 total_cycles = 0;
+
+/* memory region pointers */
+static uint8 *nes6502_banks[NES6502_NUMBANKS];
+static uint8 *ram = NULL;
+static uint8 *stack_page = NULL;
+
+
+/*
+** Zero-page helper macros
+*/
+
+#define ZP_READ(addr) ram[(addr)]
+#define ZP_WRITE(addr, value) ram[(addr)] = (uint8) (value)
+
+
+INLINE uint8
+bank_readbyte (register uint32 address)
+{
+ ASSERT (nes6502_banks[address >> NES6502_BANKSHIFT]);
+ return nes6502_banks[address >> NES6502_BANKSHIFT][address &
+ NES6502_BANKMASK];
+}
+
+INLINE void
+bank_writebyte (register uint32 address, register uint8 value)
+{
+ ASSERT (nes6502_banks[address >> NES6502_BANKSHIFT]);
+ nes6502_banks[address >> NES6502_BANKSHIFT][address & NES6502_BANKMASK] =
+ value;
+}
+
+INLINE uint32
+zp_address (register uint8 address)
+{
+#ifdef HOST_LITTLE_ENDIAN
+ /* TODO: this fails if src address is $xFFF */
+ /* TODO: this fails if host architecture doesn't support byte alignment */
+ return (uint32) (*(uint16 *) (ram + address));
+#else
+#ifdef TARGET_CPU_PPC
+ return __lhbrx (ram, address);
+#else
+ uint32 x = (uint32) * (uint16 *) (ram + address);
+
+ return (x << 8) | (x >> 8);
+#endif /* TARGET_CPU_PPC */
+#endif /* HOST_LITTLE_ENDIAN */
+}
+
+INLINE uint32
+bank_readaddress (register uint32 address)
+{
+#ifdef HOST_LITTLE_ENDIAN
+ /* TODO: this fails if src address is $xFFF */
+ /* TODO: this fails if host architecture doesn't support byte alignment */
+ return (uint32) (*(uint16 *) (nes6502_banks[address >> NES6502_BANKSHIFT] +
+ (address & NES6502_BANKMASK)));
+#else
+#ifdef TARGET_CPU_PPC
+ return __lhbrx (nes6502_banks[address >> NES6502_BANKSHIFT],
+ address & NES6502_BANKMASK);
+#else
+ uint32 x =
+ (uint32) * (uint16 *) (nes6502_banks[address >> NES6502_BANKSHIFT] +
+ (address & NES6502_BANKMASK));
+ return (x << 8) | (x >> 8);
+#endif /* TARGET_CPU_PPC */
+#endif /* HOST_LITTLE_ENDIAN */
+}
+
+/* read a byte of 6502 memory */
+static uint8
+mem_read (uint32 address)
+{
+ /* TODO: following cases are N2A03-specific */
+ /* RAM */
+ if (address < 0x800)
+ return ram[address];
+ /* always paged memory */
+ /* else if (address >= 0x6000) */
+ else if (address >= 0x8000)
+ return bank_readbyte (address);
+ /* check memory range handlers */
+ else {
+ for (pmr = pmem_read; pmr->min_range != 0xFFFFFFFF; pmr++) {
+ if ((address >= pmr->min_range) && (address <= pmr->max_range))
+ return pmr->read_func (address);
+ }
+ }
+
+ /* return paged memory */
+ return bank_readbyte (address);
+}
+
+/* write a byte of data to 6502 memory */
+static void
+mem_write (uint32 address, uint8 value)
+{
+ /* RAM */
+ if (address < 0x800) {
+ ram[address] = value;
+ return;
+ }
+ /* check memory range handlers */
+ else {
+ for (pmw = pmem_write; pmw->min_range != 0xFFFFFFFF; pmw++) {
+ if ((address >= pmw->min_range) && (address <= pmw->max_range)) {
+ pmw->write_func (address, value);
+ return;
+ }
+ }
+ }
+
+ /* write to paged memory */
+ bank_writebyte (address, value);
+}
+
+/* set the current context */
+void
+nes6502_setcontext (nes6502_context * cpu)
+{
+ int loop;
+
+ ASSERT (cpu);
+
+ /* Set the page pointers */
+ for (loop = 0; loop < NES6502_NUMBANKS; loop++)
+ nes6502_banks[loop] = cpu->mem_page[loop];
+
+ ram = nes6502_banks[0]; /* quicker zero-page/RAM references */
+ stack_page = ram + STACK_OFFSET;
+
+ pmem_read = cpu->read_handler;
+ pmem_write = cpu->write_handler;
+
+ reg_PC = cpu->pc_reg;
+ reg_A = cpu->a_reg;
+ reg_P = cpu->p_reg;
+ reg_X = cpu->x_reg;
+ reg_Y = cpu->y_reg;
+ reg_S = cpu->s_reg;
+ int_pending = cpu->int_pending;
+ dma_cycles = cpu->dma_cycles;
+}
+
+/* get the current context */
+void
+nes6502_getcontext (nes6502_context * cpu)
+{
+ int loop;
+
+ /* Set the page pointers */
+ for (loop = 0; loop < NES6502_NUMBANKS; loop++)
+ cpu->mem_page[loop] = nes6502_banks[loop];
+
+ cpu->read_handler = pmem_read;
+ cpu->write_handler = pmem_write;
+
+ cpu->pc_reg = reg_PC;
+ cpu->a_reg = reg_A;
+ cpu->p_reg = reg_P;
+ cpu->x_reg = reg_X;
+ cpu->y_reg = reg_Y;
+ cpu->s_reg = reg_S;
+ cpu->int_pending = int_pending;
+ cpu->dma_cycles = dma_cycles;
+}
+
+/* DMA a byte of data from ROM */
+uint8
+nes6502_getbyte (uint32 address)
+{
+ return bank_readbyte (address);
+}
+
+/* get number of elapsed cycles */
+uint32
+nes6502_getcycles (boolean reset_flag)
+{
+ uint32 cycles = total_cycles;
+
+ if (reset_flag)
+ total_cycles = 0;
+
+ return cycles;
+}
+
+
+/* Execute instructions until count expires
+**
+** Returns the number of cycles *actually* executed
+** (note that this can be from 0-6 cycles more than you wanted)
+*/
+int
+nes6502_execute (int remaining_cycles)
+{
+ int instruction_cycles, old_cycles = total_cycles;
+ uint32 temp, addr; /* for macros */
+ uint32 PC;
+ uint8 A, X, Y, P, S;
+ uint8 opcode, data;
+ uint8 btemp, baddr; /* for macros */
+
+ GET_GLOBAL_REGS ();
+
+ /* Continue until we run out of cycles */
+ while (remaining_cycles > 0) {
+ instruction_cycles = 0;
+
+ /* check for DMA cycle burning */
+ if (dma_cycles) {
+ if (remaining_cycles <= dma_cycles) {
+ dma_cycles -= remaining_cycles;
+ total_cycles += remaining_cycles;
+ goto _execute_done;
+ } else {
+ remaining_cycles -= dma_cycles;
+ total_cycles += dma_cycles;
+ dma_cycles = 0;
+ }
+ }
+
+ if (int_pending) {
+ /* NMI has highest priority */
+ if (int_pending & NMI_MASK) {
+ NMI ();
+ }
+ /* IRQ has lowest priority */
+ else { /* if (int_pending & IRQ_MASK) */
+
+ if (IS_FLAG_CLEAR (I_FLAG))
+ IRQ ();
+ }
+ }
+
+ /* Fetch instruction */
+ /* nes6502_disasm(PC, P, A, X, Y, S); */
+
+ opcode = bank_readbyte (PC++);
+
+ /* Execute instruction */
+ switch (opcode) {
+ case 0x00: /* BRK */
+ BRK ();
+ break;
+
+ case 0x01: /* ORA ($nn,X) */
+ ORA (6, INDIR_X_BYTE);
+ break;
+
+ /* JAM */
+ case 0x02: /* JAM */
+ case 0x12: /* JAM */
+ case 0x22: /* JAM */
+ case 0x32: /* JAM */
+ case 0x42: /* JAM */
+ case 0x52: /* JAM */
+ case 0x62: /* JAM */
+ case 0x72: /* JAM */
+ case 0x92: /* JAM */
+ case 0xB2: /* JAM */
+ case 0xD2: /* JAM */
+ case 0xF2: /* JAM */
+ JAM ();
+ /* kill switch for CPU emulation */
+ goto _execute_done;
+
+ case 0x03: /* SLO ($nn,X) */
+ SLO (8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x04: /* NOP $nn */
+ case 0x44: /* NOP $nn */
+ case 0x64: /* NOP $nn */
+ DOP (3);
+ break;
+
+ case 0x05: /* ORA $nn */
+ ORA (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x06: /* ASL $nn */
+ ASL (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x07: /* SLO $nn */
+ SLO (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x08: /* PHP */
+ PHP ();
+ break;
+
+ case 0x09: /* ORA #$nn */
+ ORA (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x0A: /* ASL A */
+ ASL_A ();
+ break;
+
+ case 0x0B: /* ANC #$nn */
+ ANC (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x0C: /* NOP $nnnn */
+ TOP ();
+ break;
+
+ case 0x0D: /* ORA $nnnn */
+ ORA (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x0E: /* ASL $nnnn */
+ ASL (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x0F: /* SLO $nnnn */
+ SLO (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x10: /* BPL $nnnn */
+ BPL ();
+ break;
+
+ case 0x11: /* ORA ($nn),Y */
+ ORA (5, INDIR_Y_BYTE);
+ break;
+
+ case 0x13: /* SLO ($nn),Y */
+ SLO (8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x14: /* NOP $nn,X */
+ case 0x34: /* NOP */
+ case 0x54: /* NOP $nn,X */
+ case 0x74: /* NOP $nn,X */
+ case 0xD4: /* NOP $nn,X */
+ case 0xF4: /* NOP ($nn,X) */
+ DOP (4);
+ break;
+
+ case 0x15: /* ORA $nn,X */
+ ORA (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x16: /* ASL $nn,X */
+ ASL (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x17: /* SLO $nn,X */
+ SLO (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x18: /* CLC */
+ CLC ();
+ break;
+
+ case 0x19: /* ORA $nnnn,Y */
+ ORA (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x1A: /* NOP */
+ case 0x3A: /* NOP */
+ case 0x5A: /* NOP */
+ case 0x7A: /* NOP */
+ case 0xDA: /* NOP */
+ case 0xFA: /* NOP */
+ NOP ();
+ break;
+
+ case 0x1B: /* SLO $nnnn,Y */
+ SLO (7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x1C: /* NOP $nnnn,X */
+ case 0x3C: /* NOP $nnnn,X */
+ case 0x5C: /* NOP $nnnn,X */
+ case 0x7C: /* NOP $nnnn,X */
+ case 0xDC: /* NOP $nnnn,X */
+ case 0xFC: /* NOP $nnnn,X */
+ TOP ();
+ break;
+
+ case 0x1D: /* ORA $nnnn,X */
+ ORA (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x1E: /* ASL $nnnn,X */
+ ASL (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x1F: /* SLO $nnnn,X */
+ SLO (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x20: /* JSR $nnnn */
+ JSR ();
+ break;
+
+ case 0x21: /* AND ($nn,X) */
+ AND (6, INDIR_X_BYTE);
+ break;
+
+ case 0x23: /* RLA ($nn,X) */
+ RLA (8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x24: /* BIT $nn */
+ BIT (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x25: /* AND $nn */
+ AND (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x26: /* ROL $nn */
+ ROL (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x27: /* RLA $nn */
+ RLA (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x28: /* PLP */
+ PLP ();
+ break;
+
+ case 0x29: /* AND #$nn */
+ AND (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x2A: /* ROL A */
+ ROL_A ();
+ break;
+
+ case 0x2B: /* ANC #$nn */
+ ANC (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x2C: /* BIT $nnnn */
+ BIT (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x2D: /* AND $nnnn */
+ AND (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x2E: /* ROL $nnnn */
+ ROL (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x2F: /* RLA $nnnn */
+ RLA (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x30: /* BMI $nnnn */
+ BMI ();
+ break;
+
+ case 0x31: /* AND ($nn),Y */
+ AND (5, INDIR_Y_BYTE);
+ break;
+
+ case 0x33: /* RLA ($nn),Y */
+ RLA (8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x35: /* AND $nn,X */
+ AND (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x36: /* ROL $nn,X */
+ ROL (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x37: /* RLA $nn,X */
+ RLA (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x38: /* SEC */
+ SEC ();
+ break;
+
+ case 0x39: /* AND $nnnn,Y */
+ AND (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x3B: /* RLA $nnnn,Y */
+ RLA (7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x3D: /* AND $nnnn,X */
+ AND (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x3E: /* ROL $nnnn,X */
+ ROL (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x3F: /* RLA $nnnn,X */
+ RLA (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x40: /* RTI */
+ RTI ();
+ break;
+
+ case 0x41: /* EOR ($nn,X) */
+ EOR (6, INDIR_X_BYTE);
+ break;
+
+ case 0x43: /* SRE ($nn,X) */
+ SRE (8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x45: /* EOR $nn */
+ EOR (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x46: /* LSR $nn */
+ LSR (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x47: /* SRE $nn */
+ SRE (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x48: /* PHA */
+ PHA ();
+ break;
+
+ case 0x49: /* EOR #$nn */
+ EOR (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x4A: /* LSR A */
+ LSR_A ();
+ break;
+
+ case 0x4B: /* ASR #$nn */
+ ASR (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x4C: /* JMP $nnnn */
+ JMP_ABSOLUTE ();
+ break;
+
+ case 0x4D: /* EOR $nnnn */
+ EOR (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x4E: /* LSR $nnnn */
+ LSR (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x4F: /* SRE $nnnn */
+ SRE (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x50: /* BVC $nnnn */
+ BVC ();
+ break;
+
+ case 0x51: /* EOR ($nn),Y */
+ EOR (5, INDIR_Y_BYTE);
+ break;
+
+ case 0x53: /* SRE ($nn),Y */
+ SRE (8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x55: /* EOR $nn,X */
+ EOR (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x56: /* LSR $nn,X */
+ LSR (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x57: /* SRE $nn,X */
+ SRE (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x58: /* CLI */
+ CLI ();
+ break;
+
+ case 0x59: /* EOR $nnnn,Y */
+ EOR (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x5B: /* SRE $nnnn,Y */
+ SRE (7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x5D: /* EOR $nnnn,X */
+ EOR (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x5E: /* LSR $nnnn,X */
+ LSR (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x5F: /* SRE $nnnn,X */
+ SRE (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x60: /* RTS */
+ RTS ();
+ break;
+
+ case 0x61: /* ADC ($nn,X) */
+ ADC (6, INDIR_X_BYTE);
+ break;
+
+ case 0x63: /* RRA ($nn,X) */
+ RRA (8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0x65: /* ADC $nn */
+ ADC (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0x66: /* ROR $nn */
+ ROR (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x67: /* RRA $nn */
+ RRA (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0x68: /* PLA */
+ PLA ();
+ break;
+
+ case 0x69: /* ADC #$nn */
+ ADC (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x6A: /* ROR A */
+ ROR_A ();
+ break;
+
+ case 0x6B: /* ARR #$nn */
+ ARR (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x6C: /* JMP ($nnnn) */
+ JMP_INDIRECT ();
+ break;
+
+ case 0x6D: /* ADC $nnnn */
+ ADC (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0x6E: /* ROR $nnnn */
+ ROR (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x6F: /* RRA $nnnn */
+ RRA (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0x70: /* BVS $nnnn */
+ BVS ();
+ break;
+
+ case 0x71: /* ADC ($nn),Y */
+ ADC (5, INDIR_Y_BYTE);
+ break;
+
+ case 0x73: /* RRA ($nn),Y */
+ RRA (8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0x75: /* ADC $nn,X */
+ ADC (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0x76: /* ROR $nn,X */
+ ROR (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x77: /* RRA $nn,X */
+ RRA (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0x78: /* SEI */
+ SEI ();
+ break;
+
+ case 0x79: /* ADC $nnnn,Y */
+ ADC (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0x7B: /* RRA $nnnn,Y */
+ RRA (7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0x7D: /* ADC $nnnn,X */
+ ADC (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0x7E: /* ROR $nnnn,X */
+ ROR (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x7F: /* RRA $nnnn,X */
+ RRA (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0x80: /* NOP #$nn */
+ case 0x82: /* NOP #$nn */
+ case 0x89: /* NOP #$nn */
+ case 0xC2: /* NOP #$nn */
+ case 0xE2: /* NOP #$nn */
+ DOP (2);
+ break;
+
+ case 0x81: /* STA ($nn,X) */
+ STA (6, INDIR_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x83: /* SAX ($nn,X) */
+ SAX (6, INDIR_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x84: /* STY $nn */
+ STY (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x85: /* STA $nn */
+ STA (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x86: /* STX $nn */
+ STX (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x87: /* SAX $nn */
+ SAX (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x88: /* DEY */
+ DEY ();
+ break;
+
+ case 0x8A: /* TXA */
+ TXA ();
+ break;
+
+ case 0x8B: /* ANE #$nn */
+ ANE (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0x8C: /* STY $nnnn */
+ STY (4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x8D: /* STA $nnnn */
+ STA (4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x8E: /* STX $nnnn */
+ STX (4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x8F: /* SAX $nnnn */
+ SAX (4, ABSOLUTE_ADDR, mem_write, addr);
+ break;
+
+ case 0x90: /* BCC $nnnn */
+ BCC ();
+ break;
+
+ case 0x91: /* STA ($nn),Y */
+ STA (6, INDIR_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x93: /* SHA ($nn),Y */
+ SHA (6, INDIR_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x94: /* STY $nn,X */
+ STY (4, ZP_IND_X_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x95: /* STA $nn,X */
+ STA (4, ZP_IND_X_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x96: /* STX $nn,Y */
+ STX (4, ZP_IND_Y_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x97: /* SAX $nn,Y */
+ SAX (4, ZP_IND_Y_ADDR, ZP_WRITE, baddr);
+ break;
+
+ case 0x98: /* TYA */
+ TYA ();
+ break;
+
+ case 0x99: /* STA $nnnn,Y */
+ STA (5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x9A: /* TXS */
+ TXS ();
+ break;
+
+ case 0x9B: /* SHS $nnnn,Y */
+ SHS (5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x9C: /* SHY $nnnn,X */
+ SHY (5, ABS_IND_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x9D: /* STA $nnnn,X */
+ STA (5, ABS_IND_X_ADDR, mem_write, addr);
+ break;
+
+ case 0x9E: /* SHX $nnnn,Y */
+ SHX (5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0x9F: /* SHA $nnnn,Y */
+ SHA (5, ABS_IND_Y_ADDR, mem_write, addr);
+ break;
+
+ case 0xA0: /* LDY #$nn */
+ LDY (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xA1: /* LDA ($nn,X) */
+ LDA (6, INDIR_X_BYTE);
+ break;
+
+ case 0xA2: /* LDX #$nn */
+ LDX (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xA3: /* LAX ($nn,X) */
+ LAX (6, INDIR_X_BYTE);
+ break;
+
+ case 0xA4: /* LDY $nn */
+ LDY (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA5: /* LDA $nn */
+ LDA (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA6: /* LDX $nn */
+ LDX (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA7: /* LAX $nn */
+ LAX (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xA8: /* TAY */
+ TAY ();
+ break;
+
+ case 0xA9: /* LDA #$nn */
+ LDA (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xAA: /* TAX */
+ TAX ();
+ break;
+
+ case 0xAB: /* LXA #$nn */
+ LXA (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xAC: /* LDY $nnnn */
+ LDY (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xAD: /* LDA $nnnn */
+ LDA (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xAE: /* LDX $nnnn */
+ LDX (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xAF: /* LAX $nnnn */
+ LAX (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xB0: /* BCS $nnnn */
+ BCS ();
+ break;
+
+ case 0xB1: /* LDA ($nn),Y */
+ LDA (5, INDIR_Y_BYTE);
+ break;
+
+ case 0xB3: /* LAX ($nn),Y */
+ LAX (5, INDIR_Y_BYTE);
+ break;
+
+ case 0xB4: /* LDY $nn,X */
+ LDY (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xB5: /* LDA $nn,X */
+ LDA (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xB6: /* LDX $nn,Y */
+ LDX (4, ZP_IND_Y_BYTE);
+ break;
+
+ case 0xB7: /* LAX $nn,Y */
+ LAX (4, ZP_IND_Y_BYTE);
+ break;
+
+ case 0xB8: /* CLV */
+ CLV ();
+ break;
+
+ case 0xB9: /* LDA $nnnn,Y */
+ LDA (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xBA: /* TSX */
+ TSX ();
+ break;
+
+ case 0xBB: /* LAS $nnnn,Y */
+ LAS (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xBC: /* LDY $nnnn,X */
+ LDY (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xBD: /* LDA $nnnn,X */
+ LDA (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xBE: /* LDX $nnnn,Y */
+ LDX (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xBF: /* LAX $nnnn,Y */
+ LAX (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xC0: /* CPY #$nn */
+ CPY (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xC1: /* CMP ($nn,X) */
+ CMP (6, INDIR_X_BYTE);
+ break;
+
+ case 0xC3: /* DCP ($nn,X) */
+ DCP (8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0xC4: /* CPY $nn */
+ CPY (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xC5: /* CMP $nn */
+ CMP (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xC6: /* DEC $nn */
+ DEC (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xC7: /* DCP $nn */
+ DCP (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xC8: /* INY */
+ INY ();
+ break;
+
+ case 0xC9: /* CMP #$nn */
+ CMP (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xCA: /* DEX */
+ DEX ();
+ break;
+
+ case 0xCB: /* SBX #$nn */
+ SBX (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xCC: /* CPY $nnnn */
+ CPY (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xCD: /* CMP $nnnn */
+ CMP (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xCE: /* DEC $nnnn */
+ DEC (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xCF: /* DCP $nnnn */
+ DCP (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xD0: /* BNE $nnnn */
+ BNE ();
+ break;
+
+ case 0xD1: /* CMP ($nn),Y */
+ CMP (5, INDIR_Y_BYTE);
+ break;
+
+ case 0xD3: /* DCP ($nn),Y */
+ DCP (8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0xD5: /* CMP $nn,X */
+ CMP (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xD6: /* DEC $nn,X */
+ DEC (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xD7: /* DCP $nn,X */
+ DCP (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xD8: /* CLD */
+ CLD ();
+ break;
+
+ case 0xD9: /* CMP $nnnn,Y */
+ CMP (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xDB: /* DCP $nnnn,Y */
+ DCP (7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0xDD: /* CMP $nnnn,X */
+ CMP (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xDE: /* DEC $nnnn,X */
+ DEC (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0xDF: /* DCP $nnnn,X */
+ DCP (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0xE0: /* CPX #$nn */
+ CPX (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xE1: /* SBC ($nn,X) */
+ SBC (6, INDIR_X_BYTE);
+ break;
+
+ case 0xE3: /* ISB ($nn,X) */
+ ISB (8, INDIR_X, mem_write, addr);
+ break;
+
+ case 0xE4: /* CPX $nn */
+ CPX (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xE5: /* SBC $nn */
+ SBC (3, ZERO_PAGE_BYTE);
+ break;
+
+ case 0xE6: /* INC $nn */
+ INC (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xE7: /* ISB $nn */
+ ISB (5, ZERO_PAGE, ZP_WRITE, baddr);
+ break;
+
+ case 0xE8: /* INX */
+ INX ();
+ break;
+
+ case 0xE9: /* SBC #$nn */
+ case 0xEB: /* USBC #$nn */
+ SBC (2, IMMEDIATE_BYTE);
+ break;
+
+ case 0xEA: /* NOP */
+ NOP ();
+ break;
+
+ case 0xEC: /* CPX $nnnn */
+ CPX (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xED: /* SBC $nnnn */
+ SBC (4, ABSOLUTE_BYTE);
+ break;
+
+ case 0xEE: /* INC $nnnn */
+ INC (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xEF: /* ISB $nnnn */
+ ISB (6, ABSOLUTE, mem_write, addr);
+ break;
+
+ case 0xF0: /* BEQ $nnnn */
+ BEQ ();
+ break;
+
+ case 0xF1: /* SBC ($nn),Y */
+ SBC (5, INDIR_Y_BYTE);
+ break;
+
+ case 0xF3: /* ISB ($nn),Y */
+ ISB (8, INDIR_Y, mem_write, addr);
+ break;
+
+ case 0xF5: /* SBC $nn,X */
+ SBC (4, ZP_IND_X_BYTE);
+ break;
+
+ case 0xF6: /* INC $nn,X */
+ INC (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xF7: /* ISB $nn,X */
+ ISB (6, ZP_IND_X, ZP_WRITE, baddr);
+ break;
+
+ case 0xF8: /* SED */
+ SED ();
+ break;
+
+ case 0xF9: /* SBC $nnnn,Y */
+ SBC (4, ABS_IND_Y_BYTE);
+ break;
+
+ case 0xFB: /* ISB $nnnn,Y */
+ ISB (7, ABS_IND_Y, mem_write, addr);
+ break;
+
+ case 0xFD: /* SBC $nnnn,X */
+ SBC (4, ABS_IND_X_BYTE);
+ break;
+
+ case 0xFE: /* INC $nnnn,X */
+ INC (7, ABS_IND_X, mem_write, addr);
+ break;
+
+ case 0xFF: /* ISB $nnnn,X */
+ ISB (7, ABS_IND_X, mem_write, addr);
+ break;
+ }
+
+ /* Calculate remaining/elapsed clock cycles */
+ remaining_cycles -= instruction_cycles;
+ total_cycles += instruction_cycles;
+ }
+
+_execute_done:
+
+ /* restore local copy of regs */
+ SET_LOCAL_REGS ();
+
+ /* Return our actual amount of executed cycles */
+ return (total_cycles - old_cycles);
+}
+
+/* Initialize tables, etc. */
+void
+nes6502_init (void)
+{
+ int index;
+
+ /* Build the N / Z flag lookup table */
+ flag_table[0] = Z_FLAG;
+
+ for (index = 1; index < 256; index++)
+ flag_table[index] = (index & 0x80) ? N_FLAG : 0;
+
+ reg_A = reg_X = reg_Y = 0;
+ reg_S = 0xFF; /* Stack grows down */
+}
+
+
+/* Issue a CPU Reset */
+void
+nes6502_reset (void)
+{
+ reg_P = Z_FLAG | R_FLAG | I_FLAG; /* Reserved bit always 1 */
+ int_pending = dma_cycles = 0; /* No pending interrupts */
+ reg_PC = bank_readaddress (RESET_VECTOR); /* Fetch reset vector */
+ /* TODO: 6 cycles for RESET? */
+}
+
+/* Non-maskable interrupt */
+void
+nes6502_nmi (void)
+{
+ int_pending |= NMI_MASK;
+}
+
+/* Interrupt request */
+void
+nes6502_irq (void)
+{
+ int_pending |= IRQ_MASK;
+}
+
+/* Set dma period (in cycles) */
+void
+nes6502_setdma (int cycles)
+{
+ dma_cycles += cycles;
+}
+
+/*
+** $Log$
+** Revision 1.1 2006/07/13 15:07:28 wtay
+** Based on patches by: Johan Dahlin <johan at gnome dot org>
+** Ronald Bultje <rbultje at ronald dot bitfreak dot net>
+** * configure.ac:
+** * gst/nsf/Makefile.am:
+** * gst/nsf/dis6502.h:
+** * gst/nsf/fds_snd.c:
+** * gst/nsf/fds_snd.h:
+** * gst/nsf/fmopl.c:
+** * gst/nsf/fmopl.h:
+** * gst/nsf/gstnsf.c:
+** * gst/nsf/gstnsf.h:
+** * gst/nsf/log.c:
+** * gst/nsf/log.h:
+** * gst/nsf/memguard.c:
+** * gst/nsf/memguard.h:
+** * gst/nsf/mmc5_snd.c:
+** * gst/nsf/mmc5_snd.h:
+** * gst/nsf/nes6502.c:
+** * gst/nsf/nes6502.h:
+** * gst/nsf/nes_apu.c:
+** * gst/nsf/nes_apu.h:
+** * gst/nsf/nsf.c:
+** * gst/nsf/nsf.h:
+** * gst/nsf/osd.h:
+** * gst/nsf/types.h:
+** * gst/nsf/vrc7_snd.c:
+** * gst/nsf/vrc7_snd.h:
+** * gst/nsf/vrcvisnd.c:
+** * gst/nsf/vrcvisnd.h:
+** Added NSF decoder plugin. Fixes 151192.
+**
+** Revision 1.6 2000/07/04 04:50:07 matt
+** minor change to includes
+**
+** Revision 1.5 2000/07/03 02:18:16 matt
+** added a few notes about potential failure cases
+**
+** Revision 1.4 2000/06/09 15:12:25 matt
+** initial revision
+**
+*/