diff options
Diffstat (limited to 'gst-libs/gst/idct/intidct.c')
-rw-r--r-- | gst-libs/gst/idct/intidct.c | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/gst-libs/gst/idct/intidct.c b/gst-libs/gst/idct/intidct.c new file mode 100644 index 00000000..119b7fd1 --- /dev/null +++ b/gst-libs/gst/idct/intidct.c @@ -0,0 +1,391 @@ +/* + * jrevdct.c + * + * Copyright (C) 1991, 1992, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains the basic inverse-DCT transformation subroutine. + * + * This implementation is based on an algorithm described in + * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + */ + +#include "dct.h" + +/* We assume that right shift corresponds to signed division by 2 with + * rounding towards minus infinity. This is correct for typical "arithmetic + * shift" instructions that shift in copies of the sign bit. But some + * C compilers implement >> with an unsigned shift. For these machines you + * must define RIGHT_SHIFT_IS_UNSIGNED. + * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. + * It is only applied with constant shift counts. SHIFT_TEMPS must be + * included in the variables of any routine using RIGHT_SHIFT. + */ + +#ifdef RIGHT_SHIFT_IS_UNSIGNED +#define SHIFT_TEMPS INT32 shift_temp; +#define RIGHT_SHIFT(x,shft) \ + ((shift_temp = (x)) < 0 ? \ + (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ + (shift_temp >> (shft))) +#else +#define SHIFT_TEMPS +#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) +#endif + + +/* + * This routine is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT + * on each column. Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * The poop on this scaling stuff is as follows: + * + * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) + * larger than the true IDCT outputs. The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm. The advantage of + * this arrangement is that we save two multiplications per 1-D IDCT, + * because the y0 and y4 inputs need not be divided by sqrt(N). + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic. We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants). After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output. This division can be done + * cheaply as a right shift of CONST_BITS bits. We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision. These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling. (To scale up 12-bit sample data further, an + * intermediate INT32 array would be needed.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis + * shows that the values given below are the most effective. + */ + +#ifdef EIGHT_BIT_SAMPLES +#define CONST_BITS 13 +#define PASS1_BITS 2 +#else +#define CONST_BITS 13 +#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ +#endif + +#define ONE ((INT32) 1) + +#define CONST_SCALE (ONE << CONST_BITS) + +/* Convert a positive real constant to an integer scaled by CONST_SCALE. */ + +#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ +#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ +#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ +#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ +#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ +#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ +#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ +#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ +#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ +#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ +#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ +#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ +#else +#define FIX_0_298631336 FIX(0.298631336) +#define FIX_0_390180644 FIX(0.390180644) +#define FIX_0_541196100 FIX(0.541196100) +#define FIX_0_765366865 FIX(0.765366865) +#define FIX_0_899976223 FIX(0.899976223) +#define FIX_1_175875602 FIX(1.175875602) +#define FIX_1_501321110 FIX(1.501321110) +#define FIX_1_847759065 FIX(1.847759065) +#define FIX_1_961570560 FIX(1.961570560) +#define FIX_2_053119869 FIX(2.053119869) +#define FIX_2_562915447 FIX(2.562915447) +#define FIX_3_072711026 FIX(3.072711026) +#endif + + +/* Descale and correctly round an INT32 value that's scaled by N bits. + * We assume RIGHT_SHIFT rounds towards minus infinity, so adding + * the fudge factor is correct for either sign of X. + */ + +#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; + * this provides a useful speedup on many machines. + * There is no way to specify a 16x16->32 multiply in portable C, but + * some C compilers will do the right thing if you provide the correct + * combination of casts. + * NB: for 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#ifdef EIGHT_BIT_SAMPLES +#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ +#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const))) +#endif +#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ +#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const))) +#endif +#endif + +#ifndef MULTIPLY /* default definition */ +#define MULTIPLY(var,const) ((var) * (const)) +#endif + + +/* + * Perform the inverse DCT on one block of coefficients. + */ + +void +gst_idct_int_idct (DCTBLOCK data) +{ + INT32 tmp0, tmp1, tmp2, tmp3; + INT32 tmp10, tmp11, tmp12, tmp13; + INT32 z1, z2, z3, z4, z5; + register DCTELEM *dataptr; + int rowctr; + SHIFT_TEMPS + + /* Pass 1: process rows. */ + /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + dataptr = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any row in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * row DCT calculations can be simplified this way. + */ + + if ((dataptr[1] | dataptr[2] | dataptr[3] | dataptr[4] | + dataptr[5] | dataptr[6] | dataptr[7]) == 0) { + /* AC terms all zero */ + DCTELEM dcval = (DCTELEM) (dataptr[0] << PASS1_BITS); + + dataptr[0] = dcval; + dataptr[1] = dcval; + dataptr[2] = dcval; + dataptr[3] = dcval; + dataptr[4] = dcval; + dataptr[5] = dcval; + dataptr[6] = dcval; + dataptr[7] = dcval; + + dataptr += DCTSIZE; /* advance pointer to next row */ + continue; + } + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + + z2 = (INT32) dataptr[2]; + z3 = (INT32) dataptr[6]; + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); + tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); + + tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS; + tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + tmp0 = (INT32) dataptr[7]; + tmp1 = (INT32) dataptr[5]; + tmp2 = (INT32) dataptr[3]; + tmp3 = (INT32) dataptr[1]; + + z1 = tmp0 + tmp3; + z2 = tmp1 + tmp2; + z3 = tmp0 + tmp2; + z4 = tmp1 + tmp3; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); + dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); + dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); + dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); + dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); + dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); + dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); + dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); + + dataptr += DCTSIZE; /* advance pointer to next row */ + } + + /* Pass 2: process columns. */ + /* Note that we must descale the results by a factor of 8 == 2**3, */ + /* and also undo the PASS1_BITS scaling. */ + + dataptr = data; + for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { + /* Columns of zeroes can be exploited in the same way as we did with rows. + * However, the row calculation has created many nonzero AC terms, so the + * simplification applies less often (typically 5% to 10% of the time). + * On machines with very fast multiplication, it's possible that the + * test takes more time than it's worth. In that case this section + * may be commented out. + */ + +#ifndef NO_ZERO_COLUMN_TEST + if ((dataptr[DCTSIZE*1] | dataptr[DCTSIZE*2] | dataptr[DCTSIZE*3] | + dataptr[DCTSIZE*4] | dataptr[DCTSIZE*5] | dataptr[DCTSIZE*6] | + dataptr[DCTSIZE*7]) == 0) { + /* AC terms all zero */ + DCTELEM dcval = (DCTELEM) DESCALE((INT32) dataptr[0], PASS1_BITS+3); + + dataptr[DCTSIZE*0] = dcval; + dataptr[DCTSIZE*1] = dcval; + dataptr[DCTSIZE*2] = dcval; + dataptr[DCTSIZE*3] = dcval; + dataptr[DCTSIZE*4] = dcval; + dataptr[DCTSIZE*5] = dcval; + dataptr[DCTSIZE*6] = dcval; + dataptr[DCTSIZE*7] = dcval; + + dataptr++; /* advance pointer to next column */ + continue; + } +#endif + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + + z2 = (INT32) dataptr[DCTSIZE*2]; + z3 = (INT32) dataptr[DCTSIZE*6]; + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); + tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); + + tmp0 = ((INT32) dataptr[DCTSIZE*0] + (INT32) dataptr[DCTSIZE*4]) << CONST_BITS; + tmp1 = ((INT32) dataptr[DCTSIZE*0] - (INT32) dataptr[DCTSIZE*4]) << CONST_BITS; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + tmp0 = (INT32) dataptr[DCTSIZE*7]; + tmp1 = (INT32) dataptr[DCTSIZE*5]; + tmp2 = (INT32) dataptr[DCTSIZE*3]; + tmp3 = (INT32) dataptr[DCTSIZE*1]; + + z1 = tmp0 + tmp3; + z2 = tmp1 + tmp2; + z3 = tmp0 + tmp2; + z4 = tmp1 + tmp3; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, + CONST_BITS+PASS1_BITS+3); + dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, + CONST_BITS+PASS1_BITS+3); + + dataptr++; /* advance pointer to next column */ + } +} |