diff options
Diffstat (limited to 'gst-libs/gst/idct/mmx32idct.c')
-rw-r--r-- | gst-libs/gst/idct/mmx32idct.c | 783 |
1 files changed, 783 insertions, 0 deletions
diff --git a/gst-libs/gst/idct/mmx32idct.c b/gst-libs/gst/idct/mmx32idct.c new file mode 100644 index 00000000..78bf45bf --- /dev/null +++ b/gst-libs/gst/idct/mmx32idct.c @@ -0,0 +1,783 @@ +/*
+ * idctmmx32.cpp
+ *
+ * Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com
+ *
+ * This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter
+ *
+ * FlasKMPEG is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * FlasKMPEG is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GNU Make; see the file COPYING. If not, write to
+ * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+
+// MMX32 iDCT algorithm (IEEE-1180 compliant) :: idct_mmx32()
+//
+// MPEG2AVI
+// --------
+// v0.16B33 initial release
+//
+// This was one of the harder pieces of work to code.
+// Intel's app-note focuses on the numerical issues of the algorithm, but
+// assumes the programmer is familiar with IDCT mathematics, leaving the
+// form of the complete function up to the programmer's imagination.
+//
+// ALGORITHM OVERVIEW
+// ------------------
+// I played around with the code for quite a few hours. I came up
+// with *A* working IDCT algorithm, however I'm not sure whether my routine
+// is "the correct one." But rest assured, my code passes all six IEEE
+// accuracy tests with plenty of margin.
+//
+// My IDCT algorithm consists of 4 steps:
+//
+// 1) IDCT-row transformation (using the IDCT-row function) on all 8 rows
+// This yields an intermediate 8x8 matrix.
+//
+// 2) intermediate matrix transpose (mandatory)
+//
+// 3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate
+// matrix. The output is the final-result, in transposed form.
+//
+// 4) post-transformation matrix transpose
+// (not necessary if the input-data is already transposed, this could
+// be done during the MPEG "zig-zag" scan, but since my algorithm
+// requires at least one transpose operation, why not re-use the
+// transpose-code.)
+//
+// Although the (1st) and (3rd) steps use the SAME row-transform operation,
+// the (3rd) step uses different shift&round constants (explained later.)
+//
+// Also note that the intermediate transpose (2) would not be neccessary,
+// if the subsequent operation were a iDCT-column transformation. Since
+// we only have the iDCT-row transform, we transpose the intermediate
+// matrix and use the iDCT-row transform a 2nd time.
+//
+// I had to change some constants/variables for my method to work :
+//
+// As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are
+// wrong. Not surprising since I'm not using a true column-transform
+// operation, but the row-transform operation (as mentioned earlier.)
+// round_inv_col[], which is given as "4 short" values, should have the
+// same dimensions as round_inv_row[]. The corrected variables are
+// shown.
+//
+// Intel's code defines a different table for each each row operation.
+// The tables given are 0/4, 1/7, 2/6, and 5/3. My code only uses row#0.
+// Using the other rows messes up the overall transform.
+//
+// IMPLEMENTATION DETAILs
+// ----------------------
+//
+// I divided the algorithm's work into two subroutines,
+// 1) idct_mmx32_rows() - transforms 8 rows, then transpose
+// 2) idct_mmx32_cols() - transforms 8 rows, then transpose
+// yields final result ("drop-in" direct replacement for INT32 IDCT)
+//
+// The 2nd function is a clone of the 1st, with changes made only to the
+// shift&rounding instructions.
+//
+// In the 1st function (rows), the shift & round instructions use
+// SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[])
+//
+// In the 2nd function (cols)-> r_inv_col[], and
+// SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[])
+//
+// Each function contains an integrated transpose-operator, which comes
+// AFTER the primary transformation operation. In the future, I'll optimize
+// the code to do more of the transpose-work "in-place". Right now, I've
+// left the code as two subroutines and a main calling function, so other
+// people can read the code more easily.
+//
+// liaor@umcc.ais.org http://members.tripod.com/~liaor
+//
+
+
+//;=============================================================================
+//;
+//; AP-922 http://developer.intel.com/vtune/cbts/strmsimd
+//; These examples contain code fragments for first stage iDCT 8x8
+//; (for rows) and first stage DCT 8x8 (for columns)
+//;
+//;=============================================================================
+/*
+mword typedef qword
+qword ptr equ mword ptr */
+
+#include <mmx.h>
+
+#define BITS_INV_ACC 4 //; 4 or 5 for IEEE
+ // 5 yields higher accuracy, but lessens dynamic range on the input matrix
+#define SHIFT_INV_ROW (16 - BITS_INV_ACC)
+#define SHIFT_INV_COL (1 + BITS_INV_ACC +14 ) // changed from Intel's val)
+//#define SHIFT_INV_COL (1 + BITS_INV_ACC )
+
+#define RND_INV_ROW (1 << (SHIFT_INV_ROW-1))
+#define RND_INV_COL (1 << (SHIFT_INV_COL-1))
+#define RND_INV_CORR (RND_INV_COL - 1) //; correction -1.0 and round
+//#define RND_INV_ROW (1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1)
+//#define RND_INV_COL (16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1)
+
+
+//.data
+//Align 16
+const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW};
+const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL};
+const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR };
+
+//const static short r_inv_col[4] =
+// {RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL};
+//const static short r_inv_corr[4] =
+// {RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR};
+
+/* constants for the forward DCT
+
+//#define BITS_FRW_ACC 3 //; 2 or 3 for accuracy
+//#define SHIFT_FRW_COL BITS_FRW_ACC
+//#define SHIFT_FRW_ROW (BITS_FRW_ACC + 17)
+//#define RND_FRW_ROW (262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1)
+
+const static __int64 one_corr = 0x0001000100010001;
+const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW };
+
+//const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5
+//const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5
+//const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5
+//const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5
+//const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
+
+//concatenated table, for forward DCT transformation
+const static short tg_all_16[] = {
+ 13036, 13036, 13036, 13036, // tg * (2<<16) + 0.5
+ 27146, 27146, 27146, 27146, //tg * (2<<16) + 0.5
+ -21746, -21746, -21746, -21746, // tg * (2<<16) + 0.5
+ -19195, -19195, -19195, -19195, //cos * (2<<16) + 0.5
+ 23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
+
+#define tg_1_16 (tg_all_16 + 0)
+#define tg_2_16 (tg_all_16 + 8)
+#define tg_3_16 (tg_all_16 + 16)
+#define cos_4_16 (tg_all_16 + 24)
+#define ocos_4_16 (tg_all_16 + 32)
+*/
+/*
+;=============================================================================
+;
+; The first stage iDCT 8x8 - inverse DCTs of rows
+;
+;-----------------------------------------------------------------------------
+; The 8-point inverse DCT direct algorithm
+;-----------------------------------------------------------------------------
+;
+; static const short w[32] = {
+; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16),
+; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16),
+; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
+; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
+; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
+; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
+; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
+; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) };
+;
+; #define DCT_8_INV_ROW(x, y)
+
+;{
+; int a0, a1, a2, a3, b0, b1, b2, b3;
+;
+; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3];
+; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7];
+; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11];
+; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
+; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
+; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
+; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
+; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
+;
+; y[0] = SHIFT_ROUND ( a0 + b0 );
+; y[1] = SHIFT_ROUND ( a1 + b1 );
+; y[2] = SHIFT_ROUND ( a2 + b2 );
+; y[3] = SHIFT_ROUND ( a3 + b3 );
+; y[4] = SHIFT_ROUND ( a3 - b3 );
+; y[5] = SHIFT_ROUND ( a2 - b2 );
+; y[6] = SHIFT_ROUND ( a1 - b1 );
+; y[7] = SHIFT_ROUND ( a0 - b0 );
+;}
+;
+;-----------------------------------------------------------------------------
+;
+; In this implementation the outputs of the iDCT-1D are multiplied
+; for rows 0,4 - by cos_4_16,
+; for rows 1,7 - by cos_1_16,
+; for rows 2,6 - by cos_2_16,
+; for rows 3,5 - by cos_3_16
+; and are shifted to the left for better accuracy
+;
+; For the constants used,
+; FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
+;
+;=============================================================================
+;=============================================================================
+IF _MMX ; MMX code
+;=============================================================================
+
+//; Table for rows 0,4 - constants are multiplied by cos_4_16
+const short tab_i_04[] = {
+ 16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
+ 21407, 8867, 8867, -21407, // w07 w05 w03 w01
+ 16384, -16384, 16384, 16384, //; w14 w12 w10 w08
+ -8867, 21407, -21407, -8867, //; w15 w13 w11 w09
+ 22725, 12873, 19266, -22725, //; w22 w20 w18 w16
+ 19266, 4520, -4520, -12873, //; w23 w21 w19 w17
+ 12873, 4520, 4520, 19266, //; w30 w28 w26 w24
+ -22725, 19266, -12873, -22725 };//w31 w29 w27 w25
+
+//; Table for rows 1,7 - constants are multiplied by cos_1_16
+const short tab_i_17[] = {
+ 22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
+ 29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
+ 22725, -22725, 22725, 22725, //; w14 w12 w10 w08
+ -12299, 29692, -29692, -12299, //; w15 w13 w11 w09
+ 31521, 17855, 26722, -31521, //; w22 w20 w18 w16
+ 26722, 6270, -6270, -17855, //; w23 w21 w19 w17
+ 17855, 6270, 6270, 26722, //; w30 w28 w26 w24
+ -31521, 26722, -17855, -31521}; // w31 w29 w27 w25
+
+//; Table for rows 2,6 - constants are multiplied by cos_2_16
+const short tab_i_26[] = {
+ 21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
+ 27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
+ 21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
+ -11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
+ 29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
+ 25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
+ 16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
+ -29692, 25172, -16819, -29692}; // ;w31 w29 w27 w25
+
+
+//; Table for rows 3,5 - constants are multiplied by cos_3_16
+const short tab_i_35[] = {
+ 19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
+ 25172, 10426, 10426, -25172, //; w07 w05 w03 w01
+ 19266, -19266, 19266, 19266, //; w14 w12 w10 w08
+ -10426, 25172, -25172, -10426, //; w15 w13 w11 w09
+ 26722, 15137, 22654, -26722, //; w22 w20 w18 w16
+ 22654, 5315, -5315, -15137, //; w23 w21 w19 w17
+ 15137, 5315, 5315, 22654, //; w30 w28 w26 w24
+ -26722, 22654, -15137, -26722}; //; w31 w29 w27 w25
+*/
+
+// CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order )
+//
+// In our implementation, however, we only use row0 !
+//
+static const short tab_i_01234567[] = {
+ //row0, this row is required
+ 16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
+ 21407, 8867, 8867, -21407, // w07 w05 w03 w01
+ 16384, -16384, 16384, 16384, //; w14 w12 w10 w08
+ -8867, 21407, -21407, -8867, //; w15 w13 w11 w09
+ 22725, 12873, 19266, -22725, //; w22 w20 w18 w16
+ 19266, 4520, -4520, -12873, //; w23 w21 w19 w17
+ 12873, 4520, 4520, 19266, //; w30 w28 w26 w24
+ -22725, 19266, -12873, -22725, //w31 w29 w27 w25
+
+ // the rest of these rows (1-7), aren't used !
+
+ //row1
+ 22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
+ 29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
+ 22725, -22725, 22725, 22725, //; w14 w12 w10 w08
+ -12299, 29692, -29692, -12299, //; w15 w13 w11 w09
+ 31521, 17855, 26722, -31521, //; w22 w20 w18 w16
+ 26722, 6270, -6270, -17855, //; w23 w21 w19 w17
+ 17855, 6270, 6270, 26722, //; w30 w28 w26 w24
+ -31521, 26722, -17855, -31521, // w31 w29 w27 w25
+
+ //row2
+ 21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
+ 27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
+ 21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
+ -11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
+ 29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
+ 25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
+ 16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
+ -29692, 25172, -16819, -29692, // ;w31 w29 w27 w25
+
+ //row3
+ 19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
+ 25172, 10426, 10426, -25172, //; w07 w05 w03 w01
+ 19266, -19266, 19266, 19266, //; w14 w12 w10 w08
+ -10426, 25172, -25172, -10426, //; w15 w13 w11 w09
+ 26722, 15137, 22654, -26722, //; w22 w20 w18 w16
+ 22654, 5315, -5315, -15137, //; w23 w21 w19 w17
+ 15137, 5315, 5315, 22654, //; w30 w28 w26 w24
+ -26722, 22654, -15137, -26722, //; w31 w29 w27 w25
+
+ //row4
+ 16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
+ 21407, 8867, 8867, -21407, // w07 w05 w03 w01
+ 16384, -16384, 16384, 16384, //; w14 w12 w10 w08
+ -8867, 21407, -21407, -8867, //; w15 w13 w11 w09
+ 22725, 12873, 19266, -22725, //; w22 w20 w18 w16
+ 19266, 4520, -4520, -12873, //; w23 w21 w19 w17
+ 12873, 4520, 4520, 19266, //; w30 w28 w26 w24
+ -22725, 19266, -12873, -22725, //w31 w29 w27 w25
+
+ //row5
+ 19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
+ 25172, 10426, 10426, -25172, //; w07 w05 w03 w01
+ 19266, -19266, 19266, 19266, //; w14 w12 w10 w08
+ -10426, 25172, -25172, -10426, //; w15 w13 w11 w09
+ 26722, 15137, 22654, -26722, //; w22 w20 w18 w16
+ 22654, 5315, -5315, -15137, //; w23 w21 w19 w17
+ 15137, 5315, 5315, 22654, //; w30 w28 w26 w24
+ -26722, 22654, -15137, -26722, //; w31 w29 w27 w25
+
+ //row6
+ 21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
+ 27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
+ 21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
+ -11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
+ 29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
+ 25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
+ 16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
+ -29692, 25172, -16819, -29692, // ;w31 w29 w27 w25
+
+ //row7
+ 22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
+ 29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
+ 22725, -22725, 22725, 22725, //; w14 w12 w10 w08
+ -12299, 29692, -29692, -12299, //; w15 w13 w11 w09
+ 31521, 17855, 26722, -31521, //; w22 w20 w18 w16
+ 26722, 6270, -6270, -17855, //; w23 w21 w19 w17
+ 17855, 6270, 6270, 26722, //; w30 w28 w26 w24
+ -31521, 26722, -17855, -31521}; // w31 w29 w27 w25
+
+
+#define INP eax // pointer to (short *blk)
+#define OUT ecx // pointer to output (temporary store space qwTemp[])
+#define TABLE ebx // pointer to tab_i_01234567[]
+#define round_inv_row edx
+#define round_inv_col edx
+
+#define ROW_STRIDE 8 // for 8x8 matrix transposer
+
+// private variables and functions
+
+//temporary storage space, 8x8 of shorts
+
+__inline static void idct_mmx32_rows( short *blk ); // transform rows
+__inline static void idct_mmx32_cols( short *blk ); // transform "columns"
+ // the "column" transform actually transforms rows, it is
+ // identical to the row-transform except for the ROUNDING
+ // and SHIFTING coefficients.
+
+
+static void
+idct_mmx32_rows( short *blk ) // transform all 8 rows of 8x8 iDCT block
+{
+ int x;
+ short qwTemp[64];
+ short *out = &qwTemp[0];
+ short *inptr = blk;
+ // this subroutine performs two operations
+ // 1) iDCT row transform
+ // for( i = 0; i < 8; ++ i)
+ // DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
+ //
+ // 2) transpose the matrix (which was stored in qwTemp[])
+ // qwTemp[] -> [8x8 matrix transpose] -> blk[]
+
+ for (x=0; x<8; x++) { // transform one row per iteration
+ movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0
+
+ movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4
+ movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0
+
+ movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00
+ punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0
+
+ // ----------
+ movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0
+ punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0
+
+ movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01
+ punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2
+
+ pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00
+ movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2
+
+ movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
+ punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2
+
+ pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01
+ punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1
+
+ pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
+ punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3
+
+ movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
+ pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16
+
+ paddd_m2r(*(r_inv_row), mm3);// +rounder
+ pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17
+
+ pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
+ paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0)
+
+ pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
+ movq_r2r(mm3, mm4); // 4 ; a1 a0
+
+ pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
+ paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0)
+
+ paddd_m2r(*(r_inv_row), mm0);// +rounder
+ psubd_r2r(mm1, mm3); // a1-b1 a0-b0
+
+ psrad_i2r(SHIFT_INV_ROW, mm3); // y6=a1-b1 y7=a0-b0
+ paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0
+
+ paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2)
+ psrad_i2r(SHIFT_INV_ROW, mm1); // y1=a1+b1 y0=a0+b0
+
+ paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2)
+ movq_r2r(mm0, mm4); // 4 ; a3 a2
+
+ paddd_r2r(mm5, mm0); // a3+b3 a2+b2
+ psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2
+
+ psrad_i2r(SHIFT_INV_ROW, mm4); // y4=a3-b3 y5=a2-b2
+ psrad_i2r(SHIFT_INV_ROW, mm0); // y3=a3+b3 y2=a2+b2
+
+ packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5
+
+ packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0
+ movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5
+
+ psrld_i2r(16, mm4); // 0 y6 0 y4
+
+ movq_r2m(mm1, *(out)); // 1 ; save y3 y2 y1 y0
+ pslld_i2r(16, mm7); // y7 0 y5 0
+
+ por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4
+
+ // begin processing row 1
+ movq_r2m(mm7, *(out+4)); // 7 ; save y7 y6 y5 y4
+
+ inptr += 8;
+ out += 8;
+ }
+
+
+ // done with the iDCT row-transformation
+
+ // now we have to transpose the output 8x8 matrix
+ // 8x8 (OUT) -> 8x8't' (IN)
+ // the transposition is implemented as 4 sub-operations.
+ // 1) transpose upper-left quad
+ // 2) transpose lower-right quad
+ // 3) transpose lower-left quad
+ // 4) transpose upper-right quad
+
+
+ // mm0 = 1st row [ A B C D ] row1
+ // mm1 = 2nd row [ E F G H ] 2
+ // mm2 = 3rd row [ I J K L ] 3
+ // mm3 = 4th row [ M N O P ] 4
+
+ // 1) transpose upper-left quad
+ out = &qwTemp[0];
+
+ movq_m2r(*(out + ROW_STRIDE * 0), mm0);
+
+ movq_m2r(*(out + ROW_STRIDE * 1), mm1);
+ movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
+
+ movq_m2r(*(out + ROW_STRIDE * 2), mm2);
+ punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
+
+ movq_m2r(*(out + ROW_STRIDE * 3), mm3);
+ punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
+
+ movq_r2r(mm2, mm6);
+ punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
+
+ punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
+ movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
+
+ inptr = blk;
+
+ punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
+
+ movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
+ punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
+
+ movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); // store row 1
+ punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
+
+// begin reading next quadrant (lower-right)
+ movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0);
+ punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
+
+ movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); // store row 3
+ movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
+
+ movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); // store row 2
+
+ movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1);
+
+ movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); // store row 4
+ punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
+
+ // 2) transpose lower-right quadrant
+
+// movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
+
+// movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
+// movq mm4, mm0; // mm4 = copy of row1[A B C D]
+
+ movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2);
+// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
+ punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
+
+ movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3);
+ movq_r2r(mm2, mm6);
+
+ punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
+ movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
+
+ punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
+ movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
+
+ punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
+
+ punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
+ ; // slot
+
+ movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); // store row 1
+ punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
+
+ movq_m2r(*(out + ROW_STRIDE * 4 ), mm0);
+ punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
+
+ movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); // store row 3
+ movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
+
+ movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); // store row 2
+ ; // slot
+
+ movq_m2r(*(out + ROW_STRIDE * 5 ), mm1);
+ ; // slot
+
+ movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); // store row 4
+ punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
+
+ // 3) transpose lower-left
+// movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ]
+
+// movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ]
+// movq mm4, mm0; // mm4 = copy of row1[A B C D]
+
+ movq_m2r(*(out + ROW_STRIDE * 6 ), mm2);
+// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
+ punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
+
+ movq_m2r(*(out + ROW_STRIDE * 7 ), mm3);
+ movq_r2r(mm2, mm6);
+
+ punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
+ movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
+
+ punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
+ movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
+
+ punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
+
+ punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
+ ;//slot
+
+ movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); // store row 1
+ punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
+
+// begin reading next quadrant (upper-right)
+ movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0);
+ punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
+
+ movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); // store row 3
+ movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
+
+ movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); // store row 2
+ movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1);
+
+ movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); // store row 4
+ punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
+
+
+ // 2) transpose lower-right quadrant
+
+// movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
+
+// movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
+// movq mm4, mm0; // mm4 = copy of row1[A B C D]
+
+ movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2);
+// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
+ punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
+
+ movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3);
+ movq_r2r(mm2, mm6);
+
+ punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
+ movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
+
+ punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
+ movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
+
+ punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
+
+ punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
+ ; // slot
+
+ movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); // store row 1
+ punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
+
+ movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); // store row 2
+ punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
+
+ movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); // store row 3
+ ; // slot
+
+ movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); // store row 4
+ ; // slot
+
+}
+
+
+static void
+idct_mmx32_cols( short *blk ) // transform all 8 cols of 8x8 iDCT block
+{
+ int x;
+ short *inptr = blk;
+
+ // Despite the function's name, the matrix is transformed
+ // row by row. This function is identical to idct_mmx32_rows(),
+ // except for the SHIFT amount and ROUND_INV amount.
+
+ // this subroutine performs two operations
+ // 1) iDCT row transform
+ // for( i = 0; i < 8; ++ i)
+ // DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
+ //
+ // 2) transpose the matrix (which was stored in qwTemp[])
+ // qwTemp[] -> [8x8 matrix transpose] -> blk[]
+
+
+ for (x=0; x<8; x++) { // transform one row per iteration
+
+ movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0
+
+ movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4
+ movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0
+
+ movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00
+ punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0
+
+// ----------
+ movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0
+ punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0
+
+ movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01
+ punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2
+
+ pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00
+ movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2
+
+ movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
+ punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2
+
+ pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01
+ punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1
+
+ pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
+ punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3
+
+ movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
+ pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16
+
+ paddd_m2r(*(r_inv_col), mm3);// +rounder
+ pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17
+
+ pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
+ paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0)
+
+ pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
+ movq_r2r(mm3, mm4); // 4 ; a1 a0
+
+ pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
+ paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0)
+
+ paddd_m2r(*(r_inv_col), mm0);// +rounder
+ psubd_r2r(mm1, mm3); // a1-b1 a0-b0
+
+ psrad_i2r(SHIFT_INV_COL, mm3); // y6=a1-b1 y7=a0-b0
+ paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0
+
+ paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2)
+ psrad_i2r(SHIFT_INV_COL, mm1); // y1=a1+b1 y0=a0+b0
+
+ paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2)
+ movq_r2r(mm0, mm4); // 4 ; a3 a2
+
+ paddd_r2r(mm5, mm0); // a3+b3 a2+b2
+ psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2
+
+
+ psrad_i2r(SHIFT_INV_COL, mm4); // y4=a3-b3 y5=a2-b2
+ psrad_i2r(SHIFT_INV_COL, mm0); // y3=a3+b3 y2=a2+b2
+
+ packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5
+
+ packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0
+ movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5
+
+ psrld_i2r(16, mm4); // 0 y6 0 y4
+
+ movq_r2m(mm1, *(inptr)); // 1 ; save y3 y2 y1 y0
+ pslld_i2r(16, mm7); // y7 0 y5 0
+
+ por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4
+
+ // begin processing row 1
+ movq_r2m(mm7, *(inptr+4)); // 7 ; save y7 y6 y5 y4
+
+ inptr += 8;
+ }
+ // done with the iDCT column-transformation
+}
+
+//
+// public interface to MMX32 IDCT 8x8 operation
+//
+void
+gst_idct_mmx32_idct( short *blk )
+{
+ // 1) iDCT row transformation
+ idct_mmx32_rows( blk ); // 1) transform iDCT row, and transpose
+
+ // 2) iDCT column transformation
+ idct_mmx32_cols( blk ); // 2) transform iDCT row, and transpose
+
+ emms(); // restore processor state
+ // all done
+}
|