/* * inputstrm.c: Base classes related to muxing out input streams into * the output stream. * * Copyright (C) 2001 Andrew Stevens * * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "fastintfns.h" #include "inputstrm.hh" #include "outputstream.hh" MuxStream::MuxStream ():init (false) { } void MuxStream::Init (const int strm_id, const unsigned int _buf_scale, const unsigned int buf_size, const unsigned int _zero_stuffing, bool bufs_in_first, bool always_bufs) { stream_id = strm_id; nsec = 0; zero_stuffing = _zero_stuffing; buffer_scale = _buf_scale; buffer_size = buf_size; bufmodel.Init (buf_size); buffers_in_header = bufs_in_first; always_buffers_in_header = always_bufs; new_au_next_sec = true; init = true; } unsigned int MuxStream::BufferSizeCode () { if (buffer_scale == 1) return buffer_size / 1024; else if (buffer_scale == 0) return buffer_size / 128; else assert (false); } ElementaryStream::ElementaryStream (IBitStream & ibs, OutputStream & into, stream_kind _kind): InputStream (ibs), muxinto (into), kind (_kind), buffer_min (INT_MAX), buffer_max (1) { } bool ElementaryStream::NextAU () { Aunit * p_au = next (); if (p_au != NULL) { au = p_au; au_unsent = p_au->length; return true; } else { au_unsent = 0; return false; } } Aunit * ElementaryStream::Lookahead () { return aunits.lookahead (); } unsigned int ElementaryStream::BytesToMuxAUEnd (unsigned int sector_transport_size) { return (au_unsent / min_packet_data) * sector_transport_size + (au_unsent % min_packet_data) + (sector_transport_size - min_packet_data); } /****************************************************************** * ElementaryStream::ReadPacketPayload * * Reads the stream data from actual input stream, updates decode * buffer model and current access unit information from the * look-ahead scanning buffer to account for bytes_muxed bytes being * muxed out. Particular important is the maintenance of "au_unsent" * the count of how much data in the current AU remains umuxed. It * not only allows us to keep track of AU's but is also used for * generating substream headers * * Unless we need to over-ride it to handle sub-stream headers * The packet payload for an elementary stream is simply the parsed and * spliced buffered stream data.. * ******************************************************************/ unsigned int ElementaryStream::ReadPacketPayload (uint8_t * dst, unsigned int to_read) { unsigned int actually_read = bs.read_buffered_bytes (dst, to_read); Muxed (actually_read); return actually_read; } void ElementaryStream::Muxed (unsigned int bytes_muxed) { clockticks decode_time; if (bytes_muxed == 0 || MuxCompleted ()) return; /* Work through what's left of the current AU and the following AU's updating the info until we reach a point where an AU had to be split between packets. NOTE: It *is* possible for this loop to iterate. The DTS/PTS field for the packet in this case would have been given the that for the first AU to start in the packet. Whether Joe-Blow's hardware VCD player handles this properly is another matter of course! */ decode_time = RequiredDTS (); while (au_unsent < bytes_muxed) { bufmodel.Queued (au_unsent, decode_time); bytes_muxed -= au_unsent; if (!NextAU ()) return; new_au_next_sec = true; decode_time = RequiredDTS (); }; // We've now reached a point where the current AU overran or // fitted exactly. We need to distinguish the latter case // so we can record whether the next packet starts with an // existing AU or not - info we need to decide what PTS/DTS // info to write at the start of the next packet. if (au_unsent > bytes_muxed) { bufmodel.Queued (bytes_muxed, decode_time); au_unsent -= bytes_muxed; new_au_next_sec = false; } else // if (au_unsent == bytes_muxed) { bufmodel.Queued (bytes_muxed, decode_time); if (!NextAU ()) return; new_au_next_sec = true; } } bool ElementaryStream::MuxPossible (clockticks currentSCR) { return (!RunOutComplete () && bufmodel.Space () > max_packet_data); } void ElementaryStream::UpdateBufferMinMax () { buffer_min = buffer_min < (int) bufmodel.Space ()? buffer_min : bufmodel.Space (); buffer_max = buffer_max > (int) bufmodel.Space ()? buffer_max : bufmodel.Space (); } void ElementaryStream::AllDemuxed () { bufmodel.Flushed (); } void ElementaryStream::DemuxedTo (clockticks SCR) { bufmodel.Cleaned (SCR); } bool ElementaryStream::MuxCompleted () { return au_unsent == 0; } void ElementaryStream::SetSyncOffset (clockticks sync_offset) { timestamp_delay = sync_offset; } Aunit * ElementaryStream::next () { Aunit *res; while (AUBufferNeedsRefill ()) { FillAUbuffer (FRAME_CHUNK); } res = aunits.next (); return res; } /* * Local variables: * c-file-style: "stroustrup" * tab-width: 4 * indent-tabs-mode: nil * End: */