/* 
 *  idctmmx32.cpp 
 *
 *	Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com
 *
 *  This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter
 *	
 *  FlasKMPEG is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2, or (at your option)
 *  any later version.
 *   
 *  FlasKMPEG is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *   
 *  You should have received a copy of the GNU General Public License
 *  along with GNU Make; see the file COPYING.  If not, write to
 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 
 *
 */


// MMX32 iDCT algorithm  (IEEE-1180 compliant) :: idct_mmx32()
//
// MPEG2AVI
// --------
//  v0.16B33 initial release
//
// This was one of the harder pieces of work to code.
// Intel's app-note focuses on the numerical issues of the algorithm, but
// assumes the programmer is familiar with IDCT mathematics, leaving the
// form of the complete function up to the programmer's imagination.
//
//  ALGORITHM OVERVIEW
//  ------------------
// I played around with the code for quite a few hours.  I came up
// with *A* working IDCT algorithm, however I'm not sure whether my routine
// is "the correct one."  But rest assured, my code passes all six IEEE 
// accuracy tests with plenty of margin.
//
//   My IDCT algorithm consists of 4 steps:
//
//   1) IDCT-row transformation (using the IDCT-row function) on all 8 rows
//      This yields an intermediate 8x8 matrix.
//
//   2) intermediate matrix transpose (mandatory)
//
//   3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate
//      matrix.  The output is the final-result, in transposed form.
//
//   4) post-transformation matrix transpose 
//      (not necessary if the input-data is already transposed, this could
//       be done during the MPEG "zig-zag" scan, but since my algorithm
//       requires at least one transpose operation, why not re-use the
//       transpose-code.)
//
//   Although the (1st) and (3rd) steps use the SAME row-transform operation,
//   the (3rd) step uses different shift&round constants (explained later.)
//
//   Also note that the intermediate transpose (2) would not be neccessary,
//   if the subsequent operation were a iDCT-column transformation.  Since
//   we only have the iDCT-row transform, we transpose the intermediate
//   matrix and use the iDCT-row transform a 2nd time.
//
//   I had to change some constants/variables for my method to work :
//
//      As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are
//      wrong.  Not surprising since I'm not using a true column-transform 
//      operation, but the row-transform operation (as mentioned earlier.)
//      round_inv_col[], which is given as "4 short" values, should have the
//      same dimensions as round_inv_row[].  The corrected variables are 
//      shown.
//
//      Intel's code defines a different table for each each row operation.
//      The tables given are 0/4, 1/7, 2/6, and 5/3.  My code only uses row#0.
//      Using the other rows messes up the overall transform.
//
//   IMPLEMENTATION DETAILs
//   ----------------------
// 
//   I divided the algorithm's work into two subroutines,
//    1) idct_mmx32_rows() - transforms 8 rows, then transpose
//    2) idct_mmx32_cols() - transforms 8 rows, then transpose
//       yields final result ("drop-in" direct replacement for INT32 IDCT)
//
//   The 2nd function is a clone of the 1st, with changes made only to the
//   shift&rounding instructions.
//
//      In the 1st function (rows), the shift & round instructions use 
//       SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[])
//
//      In the 2nd function (cols)-> r_inv_col[], and
//       SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[])
//
//   Each function contains an integrated transpose-operator, which comes
//   AFTER the primary transformation operation.  In the future, I'll optimize
//   the code to do more of the transpose-work "in-place".  Right now, I've
//   left the code as two subroutines and a main calling function, so other
//   people can read the code more easily.
//
//   liaor@umcc.ais.org  http://members.tripod.com/~liaor
//  


//;=============================================================================
//;
//;  AP-922   http://developer.intel.com/vtune/cbts/strmsimd
//; These examples contain code fragments for first stage iDCT 8x8
//; (for rows) and first stage DCT 8x8 (for columns)
//;
//;=============================================================================
/*
mword typedef qword
qword ptr equ mword ptr */

#include <mmx.h>

#define BITS_INV_ACC	4	//; 4 or 5 for IEEE
	// 5 yields higher accuracy, but lessens dynamic range on the input matrix
#define SHIFT_INV_ROW	(16 - BITS_INV_ACC)
#define SHIFT_INV_COL	(1 + BITS_INV_ACC +14 )  // changed from Intel's val)
//#define SHIFT_INV_COL	(1 + BITS_INV_ACC )

#define RND_INV_ROW		(1 << (SHIFT_INV_ROW-1))
#define RND_INV_COL		(1 << (SHIFT_INV_COL-1)) 
#define RND_INV_CORR	(RND_INV_COL - 1)		//; correction -1.0 and round
//#define RND_INV_ROW		(1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1)
//#define RND_INV_COL		(16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1)


//.data
//Align 16
const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW};
const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL};
const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR };

//const static short r_inv_col[4] = 
//	{RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL};
//const static short r_inv_corr[4] =
//	{RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR};

/* constants for the forward DCT

//#define BITS_FRW_ACC	3 //; 2 or 3 for accuracy
//#define SHIFT_FRW_COL	BITS_FRW_ACC
//#define SHIFT_FRW_ROW	(BITS_FRW_ACC + 17)
//#define RND_FRW_ROW		(262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1)

const static __int64 one_corr = 0x0001000100010001;
const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW };

//const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5
//const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5
//const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5
//const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5
//const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5

//concatenated table, for forward DCT transformation
const static short tg_all_16[] = {
	13036, 13036, 13036, 13036,		// tg * (2<<16) + 0.5
	27146, 27146, 27146, 27146,		//tg * (2<<16) + 0.5
	-21746, -21746, -21746, -21746,	// tg * (2<<16) + 0.5
	-19195, -19195, -19195, -19195,	//cos * (2<<16) + 0.5
	23170, 23170, 23170, 23170 };	//cos * (2<<15) + 0.5

#define tg_1_16 (tg_all_16 + 0)
#define tg_2_16 (tg_all_16 + 8)
#define tg_3_16 (tg_all_16 + 16)
#define cos_4_16 (tg_all_16 + 24)
#define ocos_4_16 (tg_all_16 + 32)
*/
/*
;=============================================================================
;
; The first stage iDCT 8x8 - inverse DCTs of rows
;
;-----------------------------------------------------------------------------
; The 8-point inverse DCT direct algorithm
;-----------------------------------------------------------------------------
;
; static const short w[32] = {
; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16),
; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) };
;
; #define DCT_8_INV_ROW(x, y)

;{
; int a0, a1, a2, a3, b0, b1, b2, b3;
;
; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3];
; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7];
; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11];
; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
;
; y[0] = SHIFT_ROUND ( a0 + b0 );
; y[1] = SHIFT_ROUND ( a1 + b1 );
; y[2] = SHIFT_ROUND ( a2 + b2 );
; y[3] = SHIFT_ROUND ( a3 + b3 );
; y[4] = SHIFT_ROUND ( a3 - b3 );
; y[5] = SHIFT_ROUND ( a2 - b2 );
; y[6] = SHIFT_ROUND ( a1 - b1 );
; y[7] = SHIFT_ROUND ( a0 - b0 );
;}
;
;-----------------------------------------------------------------------------
;
; In this implementation the outputs of the iDCT-1D are multiplied
; for rows 0,4 - by cos_4_16,
; for rows 1,7 - by cos_1_16,
; for rows 2,6 - by cos_2_16,
; for rows 3,5 - by cos_3_16
; and are shifted to the left for better accuracy
;
; For the constants used,
; FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
;
;=============================================================================
;=============================================================================
IF _MMX ; MMX code
;=============================================================================

//; Table for rows 0,4 - constants are multiplied by cos_4_16
const short tab_i_04[] = {
	16384, 16384, 16384, -16384,	// ; movq-> w06 w04 w02 w00
	21407, 8867, 8867, -21407,		// w07 w05 w03 w01
	16384, -16384, 16384, 16384,	//; w14 w12 w10 w08
	-8867, 21407, -21407, -8867,	//; w15 w13 w11 w09
	22725, 12873, 19266, -22725,	//; w22 w20 w18 w16
	19266, 4520, -4520, -12873,		//; w23 w21 w19 w17
	12873, 4520, 4520, 19266,		//; w30 w28 w26 w24
	-22725, 19266, -12873, -22725 };//w31 w29 w27 w25

//; Table for rows 1,7 - constants are multiplied by cos_1_16
const short tab_i_17[] = {
	22725, 22725, 22725, -22725,	// ; movq-> w06 w04 w02 w00
	29692, 12299, 12299, -29692,	//	; w07 w05 w03 w01
	22725, -22725, 22725, 22725,	//; w14 w12 w10 w08
	-12299, 29692, -29692, -12299,	//; w15 w13 w11 w09
	31521, 17855, 26722, -31521,	//; w22 w20 w18 w16
	26722, 6270, -6270, -17855,		//; w23 w21 w19 w17
	17855, 6270, 6270, 26722,		//; w30 w28 w26 w24
	-31521, 26722, -17855, -31521};	// w31 w29 w27 w25

//; Table for rows 2,6 - constants are multiplied by cos_2_16
const short tab_i_26[] = {
	21407, 21407, 21407, -21407,	// ; movq-> w06 w04 w02 w00
	27969, 11585, 11585, -27969,	// ; w07 w05 w03 w01
	21407, -21407, 21407, 21407,	// ; w14 w12 w10 w08
	-11585, 27969, -27969, -11585,	//  ;w15 w13 w11 w09
	29692, 16819, 25172, -29692, 	// ;w22 w20 w18 w16
	25172, 5906, -5906, -16819, 	// ;w23 w21 w19 w17
	16819, 5906, 5906, 25172, 		// ;w30 w28 w26 w24
	-29692, 25172, -16819, -29692};	//  ;w31 w29 w27 w25


//; Table for rows 3,5 - constants are multiplied by cos_3_16
const short tab_i_35[] = {
	19266, 19266, 19266, -19266,	//; movq-> w06 w04 w02 w00
	25172, 10426, 10426, -25172,	//; w07 w05 w03 w01
	19266, -19266, 19266, 19266,	//; w14 w12 w10 w08
	-10426, 25172, -25172, -10426,	//; w15 w13 w11 w09
	26722, 15137, 22654, -26722,	//; w22 w20 w18 w16
	22654, 5315, -5315, -15137,		//; w23 w21 w19 w17
	15137, 5315, 5315, 22654,		//; w30 w28 w26 w24
	-26722, 22654, -15137, -26722};	//; w31 w29 w27 w25
*/

// CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order )
//
// In our implementation, however, we only use row0 !
//
static const short tab_i_01234567[] = {
	//row0, this row is required
	16384, 16384, 16384, -16384,	// ; movq-> w06 w04 w02 w00
	21407, 8867, 8867, -21407,		// w07 w05 w03 w01
	16384, -16384, 16384, 16384,	//; w14 w12 w10 w08
	-8867, 21407, -21407, -8867,	//; w15 w13 w11 w09
	22725, 12873, 19266, -22725,	//; w22 w20 w18 w16
	19266, 4520, -4520, -12873,		//; w23 w21 w19 w17
	12873, 4520, 4520, 19266,		//; w30 w28 w26 w24
	-22725, 19266, -12873, -22725,  //w31 w29 w27 w25

	// the rest of these rows (1-7), aren't used !

	//row1
	22725, 22725, 22725, -22725,	// ; movq-> w06 w04 w02 w00
	29692, 12299, 12299, -29692,	//	; w07 w05 w03 w01
	22725, -22725, 22725, 22725,	//; w14 w12 w10 w08
	-12299, 29692, -29692, -12299,	//; w15 w13 w11 w09
	31521, 17855, 26722, -31521,	//; w22 w20 w18 w16
	26722, 6270, -6270, -17855,		//; w23 w21 w19 w17
	17855, 6270, 6270, 26722,		//; w30 w28 w26 w24
	-31521, 26722, -17855, -31521,	// w31 w29 w27 w25

	//row2
	21407, 21407, 21407, -21407,	// ; movq-> w06 w04 w02 w00
	27969, 11585, 11585, -27969,	// ; w07 w05 w03 w01
	21407, -21407, 21407, 21407,	// ; w14 w12 w10 w08
	-11585, 27969, -27969, -11585,	//  ;w15 w13 w11 w09
	29692, 16819, 25172, -29692, 	// ;w22 w20 w18 w16
	25172, 5906, -5906, -16819, 	// ;w23 w21 w19 w17
	16819, 5906, 5906, 25172, 		// ;w30 w28 w26 w24
	-29692, 25172, -16819, -29692,	//  ;w31 w29 w27 w25

	//row3
	19266, 19266, 19266, -19266,	//; movq-> w06 w04 w02 w00
	25172, 10426, 10426, -25172,	//; w07 w05 w03 w01
	19266, -19266, 19266, 19266,	//; w14 w12 w10 w08
	-10426, 25172, -25172, -10426,	//; w15 w13 w11 w09
	26722, 15137, 22654, -26722,	//; w22 w20 w18 w16
	22654, 5315, -5315, -15137,		//; w23 w21 w19 w17
	15137, 5315, 5315, 22654,		//; w30 w28 w26 w24
	-26722, 22654, -15137, -26722,	//; w31 w29 w27 w25

	//row4
	16384, 16384, 16384, -16384,	// ; movq-> w06 w04 w02 w00
	21407, 8867, 8867, -21407,		// w07 w05 w03 w01
	16384, -16384, 16384, 16384,	//; w14 w12 w10 w08
	-8867, 21407, -21407, -8867,	//; w15 w13 w11 w09
	22725, 12873, 19266, -22725,	//; w22 w20 w18 w16
	19266, 4520, -4520, -12873,		//; w23 w21 w19 w17
	12873, 4520, 4520, 19266,		//; w30 w28 w26 w24
	-22725, 19266, -12873, -22725,  //w31 w29 w27 w25

	//row5
	19266, 19266, 19266, -19266,	//; movq-> w06 w04 w02 w00
	25172, 10426, 10426, -25172,	//; w07 w05 w03 w01
	19266, -19266, 19266, 19266,	//; w14 w12 w10 w08
	-10426, 25172, -25172, -10426,	//; w15 w13 w11 w09
	26722, 15137, 22654, -26722,	//; w22 w20 w18 w16
	22654, 5315, -5315, -15137,		//; w23 w21 w19 w17
	15137, 5315, 5315, 22654,		//; w30 w28 w26 w24
	-26722, 22654, -15137, -26722,	//; w31 w29 w27 w25

	//row6
	21407, 21407, 21407, -21407,	// ; movq-> w06 w04 w02 w00
	27969, 11585, 11585, -27969,	// ; w07 w05 w03 w01
	21407, -21407, 21407, 21407,	// ; w14 w12 w10 w08
	-11585, 27969, -27969, -11585,	//  ;w15 w13 w11 w09
	29692, 16819, 25172, -29692, 	// ;w22 w20 w18 w16
	25172, 5906, -5906, -16819, 	// ;w23 w21 w19 w17
	16819, 5906, 5906, 25172, 		// ;w30 w28 w26 w24
	-29692, 25172, -16819, -29692,	//  ;w31 w29 w27 w25

	//row7
	22725, 22725, 22725, -22725,	// ; movq-> w06 w04 w02 w00
	29692, 12299, 12299, -29692,	//	; w07 w05 w03 w01
	22725, -22725, 22725, 22725,	//; w14 w12 w10 w08
	-12299, 29692, -29692, -12299,	//; w15 w13 w11 w09
	31521, 17855, 26722, -31521,	//; w22 w20 w18 w16
	26722, 6270, -6270, -17855,		//; w23 w21 w19 w17
	17855, 6270, 6270, 26722,		//; w30 w28 w26 w24
	-31521, 26722, -17855, -31521};	// w31 w29 w27 w25


#define INP eax		// pointer to (short *blk)
#define OUT ecx		// pointer to output (temporary store space qwTemp[])
#define TABLE ebx	// pointer to tab_i_01234567[]
#define round_inv_row edx
#define round_inv_col edx

#define ROW_STRIDE 8 // for 8x8 matrix transposer

// private variables and functions

//temporary storage space, 8x8 of shorts

__inline static void idct_mmx32_rows( short *blk ); // transform rows
__inline static void idct_mmx32_cols( short *blk ); // transform "columns"
	// the "column" transform actually transforms rows, it is
	// identical to the row-transform except for the ROUNDING
	// and SHIFTING coefficients.

 
static void 
idct_mmx32_rows( short *blk )	// transform all 8 rows of 8x8 iDCT block
{
  int x;
  short qwTemp[64];
  short *out = &qwTemp[0];
  short *inptr = blk;
  // this subroutine performs two operations
  // 1) iDCT row transform
  //		for( i = 0; i < 8; ++ i)
  //			DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
  //
  // 2) transpose the matrix (which was stored in qwTemp[])
  //        qwTemp[] -> [8x8 matrix transpose] -> blk[]

  for (x=0; x<8; x++) {  // transform one row per iteration
	 movq_m2r(*(inptr), mm0);		// 0 ; x3 x2 x1 x0

	 movq_m2r(*(inptr+4), mm1);	// 1 ; x7 x6 x5 x4
	 movq_r2r(mm0, mm2);				// 2 ; x3 x2 x1 x0

	 movq_m2r(*(tab_i_01234567), mm3);	// 3 ; w06 w04 w02 w00
	 punpcklwd_r2r(mm1, mm0);			// x5 x1 x4 x0

    // ----------
	 movq_r2r(mm0, mm5);					// 5 ; x5 x1 x4 x0
	 punpckldq_r2r(mm0, mm0);			// x4 x0 x4 x0

	 movq_m2r(*(tab_i_01234567+4), mm4);	// 4 ; w07 w05 w03 w01
	 punpckhwd_r2r(mm1, mm2);			// 1 ; x7 x3 x6 x2

	 pmaddwd_r2r(mm0, mm3);				// x4*w06+x0*w04 x4*w02+x0*w00
	 movq_r2r(mm2, mm6);				// 6 ; x7 x3 x6 x2

	 movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
	 punpckldq_r2r(mm2, mm2);			// x6 x2 x6 x2

	 pmaddwd_r2r(mm2, mm4);				// x6*w07+x2*w05 x6*w03+x2*w01
	 punpckhdq_r2r(mm5, mm5);			// x5 x1 x5 x1

	 pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
	 punpckhdq_r2r(mm6, mm6);			// x7 x3 x7 x3

	 movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
	 pmaddwd_r2r(mm5, mm1);				// x5*w22+x1*w20 x5*w18+x1*w16

	 paddd_m2r(*(r_inv_row), mm3);// +rounder
	 pmaddwd_r2r(mm6, mm7);				// x7*w23+x3*w21 x7*w19+x3*w17

	 pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
	 paddd_r2r(mm4, mm3);				// 4 ; a1=sum(even1) a0=sum(even0)

	 pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
	 movq_r2r(mm3, mm4);				// 4 ; a1 a0

	 pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
	 paddd_r2r(mm7, mm1);				// 7 ; b1=sum(odd1) b0=sum(odd0)

	 paddd_m2r(*(r_inv_row), mm0);// +rounder
	 psubd_r2r(mm1, mm3);				// a1-b1 a0-b0

	 psrad_i2r(SHIFT_INV_ROW, mm3);		// y6=a1-b1 y7=a0-b0
	 paddd_r2r(mm4, mm1);				// 4 ; a1+b1 a0+b0

	 paddd_r2r(mm2, mm0);				// 2 ; a3=sum(even3) a2=sum(even2)
	 psrad_i2r(SHIFT_INV_ROW, mm1);		// y1=a1+b1 y0=a0+b0

	 paddd_r2r(mm6, mm5);				// 6 ; b3=sum(odd3) b2=sum(odd2)
	 movq_r2r(mm0, mm4);				// 4 ; a3 a2

	 paddd_r2r(mm5, mm0);				// a3+b3 a2+b2
	 psubd_r2r(mm5, mm4);				// 5 ; a3-b3 a2-b2

	 psrad_i2r(SHIFT_INV_ROW, mm4);		// y4=a3-b3 y5=a2-b2
	 psrad_i2r(SHIFT_INV_ROW, mm0);		// y3=a3+b3 y2=a2+b2

	 packssdw_r2r(mm3, mm4);				// 3 ; y6 y7 y4 y5

	 packssdw_r2r(mm0, mm1);				// 0 ; y3 y2 y1 y0
	 movq_r2r(mm4, mm7);				// 7 ; y6 y7 y4 y5

	 psrld_i2r(16, mm4);					// 0 y6 0 y4

	 movq_r2m(mm1, *(out));	// 1 ; save y3 y2 y1 y0
	 pslld_i2r(16, mm7);					// y7 0 y5 0

	 por_r2r(mm4, mm7);					// 4 ; y7 y6 y5 y4

   // begin processing row 1
	 movq_r2m(mm7, *(out+4));	// 7 ; save y7 y6 y5 y4

	 inptr += 8;
	 out += 8;
  }
	 

	// done with the iDCT row-transformation

	// now we have to transpose the output 8x8 matrix
	// 8x8 (OUT) -> 8x8't' (IN)
	// the transposition is implemented as 4 sub-operations.
	// 1) transpose upper-left quad
	// 2) transpose lower-right quad
	// 3) transpose lower-left quad
	// 4) transpose upper-right quad

 
	// mm0 = 1st row [ A B C D ] row1
	// mm1 = 2nd row [ E F G H ] 2
	// mm2 = 3rd row [ I J K L ] 3
	// mm3 = 4th row [ M N O P ] 4

	// 1) transpose upper-left quad
  out = &qwTemp[0];

  movq_m2r(*(out + ROW_STRIDE * 0), mm0);

  movq_m2r(*(out + ROW_STRIDE * 1), mm1);
  movq_r2r(mm0, mm4);	// mm4 = copy of row1[A B C D]
	
  movq_m2r(*(out + ROW_STRIDE * 2), mm2);
  punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
	
  movq_m2r(*(out + ROW_STRIDE * 3), mm3);
  punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]

  movq_r2r(mm2, mm6);
  punpcklwd_r2r(mm3, mm2);	// mm2 = [ 8 12 9 13]

  punpckhwd_r2r(mm3, mm6);	// mm6 = 10 14 11 15]
  movq_r2r(mm0, mm1);	// mm1 = [ 0 4 1 5]

  inptr = blk;

  punpckldq_r2r(mm2, mm0);	// final result mm0 = row1 [0 4 8 12]

  movq_r2r(mm4, mm3);	// mm3 = [ 2 6 3 7]
  punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]

  movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); // store row 1
  punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]

// begin reading next quadrant (lower-right)
  movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0); 
  punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]

  movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); // store row 3
  movq_r2r(mm0, mm4);	// mm4 = copy of row1[A B C D]

  movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); // store row 2

  movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1);

  movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); // store row 4
  punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]

	// 2) transpose lower-right quadrant

//	movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]

//	movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
//	 movq mm4, mm0;	// mm4 = copy of row1[A B C D]
	
  movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2);
//	 punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
  punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
	
  movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3);
  movq_r2r(mm2, mm6);

  punpcklwd_r2r(mm3, mm2);	// mm2 = [ 8 12 9 13]
  movq_r2r(mm0, mm1);	// mm1 = [ 0 4 1 5]

  punpckhwd_r2r(mm3, mm6);	// mm6 = 10 14 11 15]
  movq_r2r(mm4, mm3);	// mm3 = [ 2 6 3 7]

  punpckldq_r2r(mm2, mm0);	// final result mm0 = row1 [0 4 8 12]

  punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
  ; // slot

  movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); // store row 1
  punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]

  movq_m2r(*(out + ROW_STRIDE * 4 ), mm0);
  punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
  
  movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); // store row 3
  movq_r2r(mm0, mm4);	// mm4 = copy of row1[A B C D]

  movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); // store row 2
  ; // slot
  
  movq_m2r(*(out + ROW_STRIDE * 5 ), mm1);
  ; // slot

  movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); // store row 4
  punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]

  // 3) transpose lower-left
//	movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ]

//	movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ]
//	 movq mm4, mm0;	// mm4 = copy of row1[A B C D]
	
  movq_m2r(*(out + ROW_STRIDE * 6 ), mm2);
//	 punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
  punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
	
  movq_m2r(*(out + ROW_STRIDE * 7 ), mm3);
  movq_r2r(mm2, mm6);

  punpcklwd_r2r(mm3, mm2);	// mm2 = [ 8 12 9 13]
  movq_r2r(mm0, mm1);	// mm1 = [ 0 4 1 5]

  punpckhwd_r2r(mm3, mm6);	// mm6 = 10 14 11 15]
  movq_r2r(mm4, mm3);	// mm3 = [ 2 6 3 7]

  punpckldq_r2r(mm2, mm0);	// final result mm0 = row1 [0 4 8 12]

  punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
  ;//slot

  movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); // store row 1
  punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]

// begin reading next quadrant (upper-right)
  movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0);
  punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]

  movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); // store row 3
  movq_r2r(mm0, mm4);	// mm4 = copy of row1[A B C D]

  movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); // store row 2
  movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1);

  movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); // store row 4
  punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]


	// 2) transpose lower-right quadrant

//	movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]

//	movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
//	 movq mm4, mm0;	// mm4 = copy of row1[A B C D]
	
  movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2);
//	 punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
  punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
	
  movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3);
  movq_r2r(mm2, mm6);

  punpcklwd_r2r(mm3, mm2);	// mm2 = [ 8 12 9 13]
  movq_r2r(mm0, mm1);	// mm1 = [ 0 4 1 5]

  punpckhwd_r2r(mm3, mm6);	// mm6 = 10 14 11 15]
  movq_r2r(mm4, mm3);	// mm3 = [ 2 6 3 7]

  punpckldq_r2r(mm2, mm0);	// final result mm0 = row1 [0 4 8 12]

  punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
  ; // slot

  movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); // store row 1
  punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]

  movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); // store row 2
  punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]

  movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); // store row 3
  ; // slot

  movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); // store row 4
  ; // slot
 
}


static void 
idct_mmx32_cols( short *blk )	// transform all 8 cols of 8x8 iDCT block
{
  int x;
  short *inptr = blk;

	// Despite the function's name, the matrix is transformed
	// row by row.  This function is identical to idct_mmx32_rows(),
	// except for the SHIFT amount and ROUND_INV amount.

	// this subroutine performs two operations
	// 1) iDCT row transform
	//		for( i = 0; i < 8; ++ i)
	//			DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
	//
	// 2) transpose the matrix (which was stored in qwTemp[])
	//        qwTemp[] -> [8x8 matrix transpose] -> blk[]


  for (x=0; x<8; x++) {  // transform one row per iteration

    movq_m2r(*(inptr), mm0);		// 0 ; x3 x2 x1 x0

    movq_m2r(*(inptr+4), mm1);	// 1 ; x7 x6 x5 x4
	 movq_r2r(mm0, mm2);				// 2 ; x3 x2 x1 x0

	 movq_m2r(*(tab_i_01234567), mm3);	// 3 ; w06 w04 w02 w00
	 punpcklwd_r2r(mm1, mm0);			// x5 x1 x4 x0

// ----------
	 movq_r2r(mm0, mm5);					// 5 ; x5 x1 x4 x0
	 punpckldq_r2r(mm0, mm0);			// x4 x0 x4 x0

	 movq_m2r(*(tab_i_01234567+4), mm4);	// 4 ; w07 w05 w03 w01
	 punpckhwd_r2r(mm1, mm2);			// 1 ; x7 x3 x6 x2

	 pmaddwd_r2r(mm0, mm3);				// x4*w06+x0*w04 x4*w02+x0*w00
	 movq_r2r(mm2, mm6);				// 6 ; x7 x3 x6 x2

	 movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
	 punpckldq_r2r(mm2, mm2);			// x6 x2 x6 x2

	 pmaddwd_r2r(mm2, mm4);				// x6*w07+x2*w05 x6*w03+x2*w01
	 punpckhdq_r2r(mm5, mm5);			// x5 x1 x5 x1

	 pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
	 punpckhdq_r2r(mm6, mm6);			// x7 x3 x7 x3

	 movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
	 pmaddwd_r2r(mm5, mm1);				// x5*w22+x1*w20 x5*w18+x1*w16

	 paddd_m2r(*(r_inv_col), mm3);// +rounder
	 pmaddwd_r2r(mm6, mm7);				// x7*w23+x3*w21 x7*w19+x3*w17

	 pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
	 paddd_r2r(mm4, mm3);				// 4 ; a1=sum(even1) a0=sum(even0)

	 pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
	 movq_r2r(mm3, mm4);				// 4 ; a1 a0

	 pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
	 paddd_r2r(mm7, mm1);				// 7 ; b1=sum(odd1) b0=sum(odd0)

	 paddd_m2r(*(r_inv_col), mm0);// +rounder
	 psubd_r2r(mm1, mm3);				// a1-b1 a0-b0

	 psrad_i2r(SHIFT_INV_COL, mm3);		// y6=a1-b1 y7=a0-b0
	 paddd_r2r(mm4, mm1);				// 4 ; a1+b1 a0+b0

	 paddd_r2r(mm2, mm0);				// 2 ; a3=sum(even3) a2=sum(even2)
	 psrad_i2r(SHIFT_INV_COL, mm1);		// y1=a1+b1 y0=a0+b0

	 paddd_r2r(mm6, mm5);				// 6 ; b3=sum(odd3) b2=sum(odd2)
	 movq_r2r(mm0, mm4);				// 4 ; a3 a2

	 paddd_r2r(mm5, mm0);				// a3+b3 a2+b2
	 psubd_r2r(mm5, mm4);				// 5 ; a3-b3 a2-b2


	 psrad_i2r(SHIFT_INV_COL, mm4);		// y4=a3-b3 y5=a2-b2
	 psrad_i2r(SHIFT_INV_COL, mm0);		// y3=a3+b3 y2=a2+b2

	 packssdw_r2r(mm3, mm4);				// 3 ; y6 y7 y4 y5

	 packssdw_r2r(mm0, mm1);				// 0 ; y3 y2 y1 y0
	 movq_r2r(mm4, mm7);				// 7 ; y6 y7 y4 y5

	 psrld_i2r(16, mm4);					// 0 y6 0 y4

	 movq_r2m(mm1, *(inptr));	// 1 ; save y3 y2 y1 y0
	 pslld_i2r(16, mm7);					// y7 0 y5 0

	 por_r2r(mm4, mm7);					// 4 ; y7 y6 y5 y4

   // begin processing row 1
	 movq_r2m(mm7, *(inptr+4));	// 7 ; save y7 y6 y5 y4

	 inptr += 8;
  }
  // done with the iDCT column-transformation
}

//	
// public interface to MMX32 IDCT 8x8 operation
//
void
gst_idct_mmx32_idct( short *blk )
{
	// 1) iDCT row transformation
	idct_mmx32_rows( blk ); // 1) transform iDCT row, and transpose

	// 2) iDCT column transformation
	idct_mmx32_cols( blk ); // 2) transform iDCT row, and transpose

	emms();  // restore processor state
	// all done
}