/* This file is part of Ingen. Copyright 2007-2012 David Robillard Ingen is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. Ingen is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for details. You should have received a copy of the GNU Affero General Public License along with Ingen. If not, see . */ #define __STDC_LIMIT_MACROS 1 #include #include #include #include #ifdef __SSE__ # include #endif #include "ingen/URIMap.hpp" #include "ingen/URIs.hpp" #include "ingen/World.hpp" #include "ingen_config.h" #include "lv2/lv2plug.in/ns/ext/atom/util.h" #include "ingen/Log.hpp" #include "Buffer.hpp" #include "BufferFactory.hpp" #include "Engine.hpp" namespace Ingen { namespace Server { Buffer::Buffer(BufferFactory& bufs, LV2_URID type, uint32_t capacity) : _factory(bufs) , _type(type) , _capacity(capacity) , _next(NULL) , _refs(0) { #ifdef HAVE_POSIX_MEMALIGN int ret = posix_memalign((void**)&_atom, 16, capacity); #else _atom = (LV2_Atom*)malloc(capacity); int ret = (_atom != NULL) ? 0 : -1; #endif if (ret) { bufs.engine().log().error("Failed to allocate event buffer\n"); throw std::bad_alloc(); } memset(_atom, 0, capacity); _atom->size = capacity - sizeof(LV2_Atom); _atom->type = type; if (type == bufs.uris().atom_Sound) { // Audio port (Vector of float) LV2_Atom_Vector* vec = (LV2_Atom_Vector*)_atom; vec->body.child_size = sizeof(float); vec->body.child_type = bufs.uris().atom_Float; } clear(); } Buffer::~Buffer() { free(_atom); } void Buffer::recycle() { _factory.recycle(this); } void Buffer::clear() { if (is_audio() || is_control()) { _atom->size = _capacity - sizeof(LV2_Atom); set_block(0, 0, nframes()); } else if (is_sequence()) { LV2_Atom_Sequence* seq = (LV2_Atom_Sequence*)_atom; _atom->type = _factory.uris().atom_Sequence; _atom->size = sizeof(LV2_Atom_Sequence_Body); seq->body.unit = 0; seq->body.pad = 0; } } void Buffer::copy(const Context& context, const Buffer* src) { if (_type == src->type() && src->_atom->size + sizeof(LV2_Atom) <= _capacity) { memcpy(_atom, src->_atom, sizeof(LV2_Atom) + src->_atom->size); } else if (src->is_audio() && is_control()) { samples()[0] = src->samples()[0]; } else if (src->is_control() && is_audio()) { set_block(src->samples()[0], 0, context.nframes()); } else { clear(); } } void Buffer::resize(uint32_t capacity) { _atom = (LV2_Atom*)realloc(_atom, capacity); _capacity = capacity; clear(); } void* Buffer::port_data(PortType port_type) { switch (port_type.symbol()) { case PortType::CONTROL: case PortType::CV: case PortType::AUDIO: if (_atom->type == _factory.uris().atom_Float) { return (float*)LV2_ATOM_BODY(_atom); } else if (_atom->type == _factory.uris().atom_Sound) { return (float*)LV2_ATOM_CONTENTS(LV2_Atom_Vector, _atom); } break; default: return _atom; } return NULL; } const void* Buffer::port_data(PortType port_type) const { return const_cast( const_cast(this)->port_data(port_type)); } #ifdef __SSE__ /** Vector fabsf */ static inline __m128 mm_abs_ps(__m128 x) { const __m128 sign_mask = _mm_set1_ps(-0.0f); // -0.0f = 1 << 31 return _mm_andnot_ps(sign_mask, x); } #endif float Buffer::peak(const Context& context) const { #ifdef __SSE__ const __m128* const vbuf = (const __m128* const)samples(); __m128 vpeak = mm_abs_ps(vbuf[0]); const SampleCount nblocks = context.nframes() / 4; // First, find the vector absolute max of the buffer for (SampleCount i = 1; i < nblocks; ++i) { vpeak = _mm_max_ps(vpeak, mm_abs_ps(vbuf[i])); } // Now we need the single max of vpeak // vpeak = ABCD // tmp = CDAB __m128 tmp = _mm_shuffle_ps(vpeak, vpeak, _MM_SHUFFLE(2, 3, 0, 1)); // vpeak = MAX(A,C) MAX(B,D) MAX(C,A) MAX(D,B) vpeak = _mm_max_ps(vpeak, tmp); // tmp = BADC of the new vpeak // tmp = MAX(B,D) MAX(A,C) MAX(D,B) MAX(C,A) tmp = _mm_shuffle_ps(vpeak, vpeak, _MM_SHUFFLE(1, 0, 3, 2)); // vpeak = MAX(MAX(A,C), MAX(B,D)), ... vpeak = _mm_max_ps(vpeak, tmp); // peak = vpeak[0] float peak; _mm_store_ss(&peak, vpeak); return peak; #else const Sample* const buf = samples(); float peak = 0.0f; for (SampleCount i = 0; i < context.nframes(); ++i) { peak = fmaxf(peak, fabsf(buf[i])); } return peak; #endif } void Buffer::prepare_write(Context& context) { if (_type == _factory.uris().atom_Sequence) { _atom->size = sizeof(LV2_Atom_Sequence_Body); } } void Buffer::prepare_output_write(Context& context) { if (_type == _factory.uris().atom_Sequence) { _atom->type = (LV2_URID)_factory.uris().atom_Chunk; _atom->size = _capacity - sizeof(LV2_Atom_Sequence); } } bool Buffer::append_event(int64_t frames, uint32_t size, uint32_t type, const uint8_t* data) { if (sizeof(LV2_Atom) + _atom->size + lv2_atom_pad_size(size) > _capacity) { return false; } LV2_Atom_Sequence* seq = (LV2_Atom_Sequence*)_atom; LV2_Atom_Event* ev = (LV2_Atom_Event*)( (uint8_t*)seq + lv2_atom_total_size(&seq->atom)); ev->time.frames = frames; ev->body.size = size; ev->body.type = type; memcpy(ev + 1, data, size); _atom->size += sizeof(LV2_Atom_Event) + lv2_atom_pad_size(size); return true; } void intrusive_ptr_add_ref(Buffer* b) { b->ref(); } void intrusive_ptr_release(Buffer* b) { b->deref(); } } // namespace Server } // namespace Ingen