//Remove optimization /Og else wavelab crashes!!! #include "mdaLeslie.h" #include #include #include AudioEffect *createEffectInstance(audioMasterCallback audioMaster) { return new mdaLeslie(audioMaster); } mdaLeslieProgram::mdaLeslieProgram() { fParam1 = 0.66f; fParam7 = 0.50f; fParam9 = 0.60f; fParam4 = 0.70f; fParam5 = 0.60f; fParam6 = 0.70f; fParam3 = 0.48f; fParam2 = 0.50f; fParam8 = 0.50f; strcpy(name, "Leslie Simulator"); } mdaLeslie::mdaLeslie(audioMasterCallback audioMaster) : AudioEffectX(audioMaster, 3, 9) // programs, parameters { size = 256; hpos = 0; hbuf = new float[size]; fbuf1 = fbuf2 = 0.0f; twopi = 6.2831853f; setNumInputs(2); setNumOutputs(2); setUniqueID("mdaH"); // identify here DECLARE_LVZ_DEPRECATED(canMono) (); canProcessReplacing(); suspend(); programs = new mdaLeslieProgram[numPrograms]; if(programs) { programs[1].fParam1 = 0.33f; programs[1].fParam5 = 0.75f; programs[1].fParam6 = 0.57f; strcpy(programs[1].name,"Slow"); programs[2].fParam1 = 0.66f; programs[2].fParam5 = 0.60f; programs[2].fParam6 = 0.70f; strcpy(programs[2].name,"Fast"); setProgram(0); } chp = dchp = clp = dclp = shp = dshp = slp = dslp = 0.0f; lspd = 0.0f; hspd = 0.0f; lphi = 0.0f; hphi = 1.6f; setParameter(0, 0.66f); } bool mdaLeslie::getProductString(char* text) { strcpy(text, "mda Leslie"); return true; } bool mdaLeslie::getVendorString(char* text) { strcpy(text, "mda"); return true; } bool mdaLeslie::getEffectName(char* name) { strcpy(name, "Leslie"); return true; } void mdaLeslie::setParameter(LvzInt32 index, float value) { float ifs = 1.0f / getSampleRate(); float spd = twopi * ifs * 2.0f * fParam8; switch(index) { case 0: programs[curProgram].fParam1 = fParam1 = value; break; case 1: programs[curProgram].fParam7 = fParam7 = value; break; case 2: programs[curProgram].fParam9 = fParam9 = value; break; case 3: programs[curProgram].fParam4 = fParam4 = value; break; case 4: programs[curProgram].fParam5 = fParam5 = value; break; case 5: programs[curProgram].fParam6 = fParam6 = value; break; case 6: programs[curProgram].fParam3 = fParam3 = value; break; case 7: programs[curProgram].fParam2 = fParam2 = value; break; case 8: programs[curProgram].fParam8 = fParam8 = value; break; } //calcs here! filo = 1.f - (float)pow(10.0f, fParam3 * (2.27f - 0.54f * fParam3) - 1.92f); if(fParam1<0.50f) { if(fParam1<0.1f) //stop { lset = 0.00f; hset = 0.00f; lmom = 0.12f; hmom = 0.10f; } else //low speed { lset = 0.49f; hset = 0.66f; lmom = 0.27f; hmom = 0.18f; } } else //high speed { lset = 5.31f; hset = 6.40f; lmom = 0.14f; hmom = 0.09f; } hmom = (float)pow(10.0f, -ifs / hmom); lmom = (float)pow(10.0f, -ifs / lmom); hset *= spd; lset *= spd; gain = 0.4f * (float)pow(10.0f, 2.0f * fParam2 - 1.0f); lwid = fParam7 * fParam7; llev = gain * 0.9f * fParam9 * fParam9; hwid = fParam4 * fParam4; hdep = fParam5 * fParam5 * getSampleRate() / 760.0f; hlev = gain * 0.9f * fParam6 * fParam6; } mdaLeslie::~mdaLeslie() { if(hbuf) delete [] hbuf; if(programs) delete [] programs; } void mdaLeslie::setProgram(LvzInt32 program) { mdaLeslieProgram *p = &programs[program]; curProgram = program; setParameter(0, p->fParam1); setParameter(1, p->fParam7); setParameter(2, p->fParam9); setParameter(3, p->fParam4); setParameter(4, p->fParam5); setParameter(5, p->fParam6); setParameter(6, p->fParam3); setParameter(7, p->fParam2); setParameter(8, p->fParam8); setProgramName(p->name); } void mdaLeslie::suspend() { memset(hbuf, 0, size * sizeof(float)); } void mdaLeslie::setProgramName(char *name) { strcpy(programName, name); } void mdaLeslie::getProgramName(char *name) { strcpy(name, programName); } float mdaLeslie::getParameter(LvzInt32 index) { float v=0; switch(index) { case 0: v = fParam1; break; case 1: v = fParam7; break; case 2: v = fParam9; break; case 3: v = fParam4; break; case 4: v = fParam5; break; case 5: v = fParam6; break; case 6: v = fParam3; break; case 7: v = fParam2; break; case 8: v = fParam8; break; } return v; } void mdaLeslie::getParameterName(LvzInt32 index, char *label) { switch(index) { case 0: strcpy(label, "Speed:"); break; case 1: strcpy(label, "Lo Width"); break; case 2: strcpy(label, "Lo Throb"); break; case 3: strcpy(label, "Hi Width"); break; case 4: strcpy(label, "Hi Depth"); break; case 5: strcpy(label, "Hi Throb"); break; case 6: strcpy(label, "X-Over"); break; case 7: strcpy(label, "Output"); break; case 8: strcpy(label, "Speed "); break; } } #include void long2string(long value, char *string) { sprintf(string, "%ld", value); } void mdaLeslie::getParameterDisplay(LvzInt32 index, char *text) { switch(index) { case 0: if(fParam1<0.5f) { if(fParam1 < 0.1f) strcpy(text, "STOP"); else strcpy(text, "SLOW"); } else strcpy(text, "FAST"); break; case 1: long2string((long)(100 * fParam7), text); break; case 2: long2string((long)(100 * fParam9), text); break; case 3: long2string((long)(100 * fParam4), text); break; case 4: long2string((long)(100 * fParam5), text); break; case 5: long2string((long)(100 * fParam6), text); break; case 6: long2string((long)(10*int((float)pow(10.0f,1.179f + fParam3))), text); break; case 7: long2string((long)(40 * fParam2 - 20), text); break; case 8: long2string((long)(200 * fParam8), text); break; } } void mdaLeslie::getParameterLabel(LvzInt32 index, char *label) { switch(index) { case 0: strcpy(label, ""); break; case 6: strcpy(label, "Hz"); break; case 7: strcpy(label, "dB"); break; default: strcpy(label, "%"); break; } } //-------------------------------------------------------------------------------- void mdaLeslie::process(float **inputs, float **outputs, LvzInt32 sampleFrames) { float *in1 = inputs[0]; float *in2 = inputs[1]; float *out1 = outputs[0]; float *out2 = outputs[1]; float a, c, d, g=gain, h, l; float fo=filo, fb1=fbuf1, fb2=fbuf2; float hl=hlev, hs=hspd, ht, hm=hmom, hp=hphi, hw=hwid, hd=hdep; float ll=llev, ls=lspd, lt, lm=lmom, lp=lphi, lw=lwid; float hint, k0=0.03125f, k1=32.f; long hdd, hdd2, k=0, hps=hpos; ht=hset*(1.f-hm); lt=lset*(1.f-lm); chp = (float)cos(hp); chp *= chp * chp; clp = (float)cos(lp); shp = (float)sin(hp); slp = (float)sin(lp); --in1; --in2; --out1; --out2; while(--sampleFrames >= 0) { a = *++in1 + *++in2; c = out1[1]; d = out2[1]; //see processReplacing() for comments if(k) k--; else { ls = (lm * ls) + lt; hs = (hm * hs) + ht; lp += k1 * ls; hp += k1 * hs; dchp = (float)cos(hp + k1*hs); dchp = k0 * (dchp * dchp * dchp - chp); dclp = k0 * ((float)cos(lp + k1*ls) - clp); dshp = k0 * ((float)sin(hp + k1*hs) - shp); dslp = k0 * ((float)sin(lp + k1*ls) - slp); k=(long)k1; } fb1 = fo * (fb1 - a) + a; fb2 = fo * (fb2 - fb1) + fb1; h = (g - hl * chp) * (a - fb2); l = (g - ll * clp) * fb2; if(hps>0) hps--; else hps=200; hint = hps + hd * (1.0f + chp); hdd = (int)hint; hint = hint - hdd; hdd2 = hdd + 1; if(hdd>199) { if(hdd>200) hdd -= 201; hdd2 -= 201; } *(hbuf + hps) = h; a = *(hbuf + hdd); h += a + hint * ( *(hbuf + hdd2) - a); c += l + h; d += l + h; h *= hw * shp; l *= lw * slp; d += l - h; c += h - l; *++out1 = c; *++out2 = d; chp += dchp; clp += dclp; shp += dshp; slp += dslp; } lspd = ls; hspd = hs; hpos = hps; lphi = (float)fmod(lp+(k1-k)*ls,twopi); hphi = (float)fmod(hp+(k1-k)*hs,twopi); if(fabs(fb1)>1.0e-10) fbuf1=fb1; else fbuf1=0.f; if(fabs(fb2)>1.0e-10) fbuf2=fb2; else fbuf2=0.f; } void mdaLeslie::processReplacing(float **inputs, float **outputs, LvzInt32 sampleFrames) { float *in1 = inputs[0]; float *in2 = inputs[1]; float *out1 = outputs[0]; float *out2 = outputs[1]; float a, c, d, g=gain, h, l; float fo=filo, fb1=fbuf1, fb2=fbuf2; float hl=hlev, hs=hspd, ht, hm=hmom, hp=hphi, hw=hwid, hd=hdep; float ll=llev, ls=lspd, lt, lm=lmom, lp=lphi, lw=lwid; float hint, k0=0.03125f, k1=32.f; //k0 = 1/k1 long hdd, hdd2, k=0, hps=hpos; ht=hset*(1.f-hm); //target speeds lt=lset*(1.f-lm); chp = (float)cos(hp); chp *= chp * chp; //set LFO values clp = (float)cos(lp); shp = (float)sin(hp); slp = (float)sin(lp); --in1; --in2; --out1; --out2; while(--sampleFrames >= 0) { a = *++in1 + *++in2; //mono input if(k) k--; else //linear piecewise approx to LFO waveforms { ls = (lm * ls) + lt; //tend to required speed hs = (hm * hs) + ht; lp += k1 * ls; hp += k1 * hs; dchp = (float)cos(hp + k1*hs); dchp = k0 * (dchp * dchp * dchp - chp); //sin^3 level mod dclp = k0 * ((float)cos(lp + k1*ls) - clp); dshp = k0 * ((float)sin(hp + k1*hs) - shp); dslp = k0 * ((float)sin(lp + k1*ls) - slp); k=(long)k1; } fb1 = fo * (fb1 - a) + a; //crossover fb2 = fo * (fb2 - fb1) + fb1; h = (g - hl * chp) * (a - fb2); //volume l = (g - ll * clp) * fb2; if(hps>0) hps--; else hps=200; //delay input pos hint = hps + hd * (1.0f + chp); //delay output pos hdd = (int)hint; hint = hint - hdd; //linear intrpolation hdd2 = hdd + 1; if(hdd>199) { if(hdd>200) hdd -= 201; hdd2 -= 201; } *(hbuf + hps) = h; //delay input a = *(hbuf + hdd); h += a + hint * ( *(hbuf + hdd2) - a); //delay output c = l + h; d = l + h; h *= hw * shp; l *= lw * slp; d += l - h; c += h - l; *++out1 = c; //output *++out2 = d; chp += dchp; clp += dclp; shp += dshp; slp += dslp; } lspd = ls; hspd = hs; hpos = hps; lphi = (float)fmod(lp+(k1-k)*ls,twopi); hphi = (float)fmod(hp+(k1-k)*hs,twopi); if(fabs(fb1)>1.0e-10) fbuf1=fb1; else fbuf1=0.0f; //catch denormals if(fabs(fb2)>1.0e-10) fbuf2=fb2; else fbuf2=0.0f; }