/* Copyright 2008-2011 David Robillard Copyright 1999-2000 Paul Kellett (Maxim Digital Audio) This is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this software. If not, see . */ #include "mdaMultiBand.h" #include #include AudioEffect *createEffectInstance(audioMasterCallback audioMaster) { return new mdaMultiBand(audioMaster); } mdaMultiBand::mdaMultiBand(audioMasterCallback audioMaster) : AudioEffectX(audioMaster, 1, 13) // programs, parameters { //inits here! fParam1 = (float)1.00; //Listen: L/M/H/out fParam2 = (float)0.103; //xover1 fParam3 = (float)0.878; //xover2 fParam4 = (float)0.54; //L drive (1) fParam5 = (float)0.00; //M drive fParam6 = (float)0.60; //H drive fParam7 = (float)0.45; //L trim (2) fParam8 = (float)0.50; //M trim fParam9 = (float)0.50; //H trim fParam10 = (float)0.22; //attack (3) fParam11 = (float)0.602; //release (4) fParam12 = (float)0.55; //width fParam13 = (float)0.00; //MS swap /* fParam1 = (float)1.00; //Listen: L/M/H/out fParam2 = (float)0.50; //xover1 fParam3 = (float)0.50; //xover2 fParam4 = (float)0.45; //L drive (1) fParam5 = (float)0.45; //M drive fParam6 = (float)0.45; //H drive fParam7 = (float)0.50; //L trim (2) fParam8 = (float)0.50; //M trim fParam9 = (float)0.50; //H trim fParam10 = (float)0.22; //attack (3) fParam11 = (float)0.60; //release (4) fParam12 = (float)0.50; //width fParam13 = (float)0.40; //MS swap*/ setNumInputs(2); setNumOutputs(2); setUniqueID("mdaMultiBand"); // identify here DECLARE_LVZ_DEPRECATED(canMono) (); canProcessReplacing(); strcpy(programName, "Multi-Band Compressor"); //calcs here! gain1 = 1.0; driv1 = (float)pow(10.0,(2.5 * fParam4) - 1.0); trim1 = (float)(0.5 + (4.0 - 2.0 * fParam10) * (fParam4 * fParam4 * fParam4)); trim1 = (float)(trim1 * pow(10.0, 2.0 * fParam7 - 1.0)); att1 = (float)pow(10.0, -0.05 -(2.5 * fParam10)); rel1 = (float)pow(10.0, -2.0 - (3.5 * fParam11)); gain2 = 1.0; driv2 = (float)pow(10.0,(2.5 * fParam5) - 1.0); trim2 = (float)(0.5 + (4.0 - 2.0 * fParam10) * (fParam5 * fParam5 * fParam5)); trim2 = (float)(trim2 * pow(10.0, 2.0 * fParam8 - 1.0)); att2 = (float)pow(10.0, -0.05 -(2.0 * fParam10)); rel2 = (float)pow(10.0, -2.0 - (3.0 * fParam11)); gain3 = 1.0; driv3 = (float)pow(10.0,(2.5 * fParam6) - 1.0); trim3 = (float)(0.5 + (4.0 - 2.0 * fParam10) * (fParam6 * fParam6 * fParam6)); trim3 = (float)(trim3 * pow(10.0, 2.0 * fParam9 - 1.0)); att3 = (float)pow(10.0, -0.05 -(1.5 * fParam10)); rel3 = (float)pow(10.0, -2.0 - (2.5 * fParam11)); switch(int(fParam1*3.9)) { case 0: trim2=0.0; trim3=0.0; slev=0.0; break; case 1: trim1=0.0; trim3=0.0; slev=0.0; break; case 2: trim1=0.0; trim2=0.0; slev=0.0; break; default: slev=fParam12; break; } fi1 = (float)pow(10.0,fParam2 - 1.70); fo1=(float)(1.0 - fi1); fi2 = (float)pow(10.0,fParam3 - 1.05); fo2=(float)(1.0 - fi2); fb1 = fb2 = fb3 = 0.0f; mswap = 0; } mdaMultiBand::~mdaMultiBand() { } bool mdaMultiBand::getProductString(char* text) { strcpy(text, "MDA MultiBand"); return true; } bool mdaMultiBand::getVendorString(char* text) { strcpy(text, "mda"); return true; } bool mdaMultiBand::getEffectName(char* name) { strcpy(name, "MultiBand"); return true; } void mdaMultiBand::setProgramName(char *name) { strcpy(programName, name); } void mdaMultiBand::getProgramName(char *name) { strcpy(name, programName); } bool mdaMultiBand::getProgramNameIndexed (int32_t category, int32_t index, char* name) { if (index == 0) { strcpy(name, programName); return true; } return false; } void mdaMultiBand::setParameter(int32_t index, float value) { switch(index) { case 0: fParam1 = value; break; case 1: fParam2 = value; break; case 2: fParam3 = value; break; case 3: fParam4 = value; break; case 4: fParam5 = value; break; case 5: fParam6 = value; break; case 6: fParam7 = value; break; case 7: fParam8 = value; break; case 8: fParam9 = value; break; case 9: fParam10 = value; break; case 10: fParam11 = value; break; case 11: fParam12 = value; break; case 12: fParam13 = value; break; } //calcs here driv1 = (float)pow(10.0,(2.5 * fParam4) - 1.0); trim1 = (float)(0.5 + (4.0 - 2.0 * fParam10) * (fParam4 * fParam4 * fParam4)); trim1 = (float)(trim1 * pow(10.0, 2.0 * fParam7 - 1.0)); att1 = (float)pow(10.0, -0.05 -(2.5 * fParam10)); rel1 = (float)pow(10.0, -2.0 - (3.5 * fParam11)); driv2 = (float)pow(10.0,(2.5 * fParam5) - 1.0); trim2 = (float)(0.5 + (4.0 - 2.0 * fParam10) * (fParam5 * fParam5 * fParam5)); trim2 = (float)(trim2 * pow(10.0, 2.0 * fParam8 - 1.0)); att2 = (float)pow(10.0, -0.05 -(2.0 * fParam10)); rel2 = (float)pow(10.0, -2.0 - (3.0 * fParam11)); driv3 = (float)pow(10.0,(2.5 * fParam6) - 1.0); trim3 = (float)(0.5 + (4.0 - 2.0 * fParam10) * (fParam6 * fParam6 * fParam6)); trim3 = (float)(trim3 * pow(10.0, 2.0 * fParam9 - 1.0)); att3 = (float)pow(10.0, -0.05 -(1.5 * fParam10)); rel3 = (float)pow(10.0, -2.0 - (2.5 * fParam11)); switch(int(fParam1*3.9)) { case 0: trim2=0.0; trim3=0.0; slev=0.0; break; case 1: trim1=0.0; trim3=0.0; slev=0.0; break; case 2: trim1=0.0; trim2=0.0; slev=0.0; break; default: slev=fParam12; break; } fi1 = (float)pow(10.0,fParam2 - 1.70); fo1=(float)(1.0 - fi1); fi2 = (float)pow(10.0,fParam3 - 1.05); fo2=(float)(1.0 - fi2); if(fParam13>0.0) mswap=1; else mswap=0; } float mdaMultiBand::getParameter(int32_t index) { float v=0; switch(index) { case 0: v = fParam1; break; case 1: v = fParam2; break; case 2: v = fParam3; break; case 3: v = fParam4; break; case 4: v = fParam5; break; case 5: v = fParam6; break; case 6: v = fParam7; break; case 7: v = fParam8; break; case 8: v = fParam9; break; case 9: v = fParam10; break; case 10: v = fParam11; break; case 11: v = fParam12; break; case 12: v = fParam13; break; } return v; } void mdaMultiBand::getParameterName(int32_t index, char *label) { switch(index) { case 0: strcpy(label, "Listen"); break; case 1: strcpy(label, "L <> M"); break; case 2: strcpy(label, "M <> H"); break; case 3: strcpy(label, "L Comp"); break; case 4: strcpy(label, "M Comp"); break; case 5: strcpy(label, "H Comp"); break; case 6: strcpy(label, "L Out"); break; case 7: strcpy(label, "M Out"); break; case 8: strcpy(label, "H Out"); break; case 9: strcpy(label, "Attack"); break; case 10: strcpy(label, "Release"); break; case 11: strcpy(label, "Stereo"); break; case 12: strcpy(label, "Process"); break; } } #include static void int2strng(int32_t value, char *string) { sprintf(string, "%d", value); } void mdaMultiBand::getParameterDisplay(int32_t index, char *text) { switch(index) { case 0: switch(int(fParam1*3.9)) { case 0: strcpy(text, "Low"); break; case 1: strcpy(text, "Mid"); break; case 2: strcpy(text, "High"); break; default: strcpy(text, "Output"); break; } break; case 1: int2strng((int32_t)(getSampleRate() * fi1 * (0.098 + 0.09*fi1 + 0.5*(float)pow(fi1,8.2f))), text); break; case 2: int2strng((int32_t)(getSampleRate() * fi2 * (0.015 + 0.15*fi2 + 0.9*(float)pow(fi2,8.2f))), text); break; case 3: int2strng((int32_t)(30.0 * fParam4), text); break; case 4: int2strng((int32_t)(30.0 * fParam5), text); break; case 5: int2strng((int32_t)(30.0 * fParam6), text); break; case 6: int2strng((int32_t)(40.0 * fParam7 - 20.0), text); break; case 7: int2strng((int32_t)(40.0 * fParam8 - 20.0), text); break; case 8: int2strng((int32_t)(40.0 * fParam9 - 20.0), text); break; case 9: int2strng((int32_t)(-301030.1 / (getSampleRate() * log10(1.0 - att2))),text); break; case 10: int2strng((int32_t)(-301.0301 / (getSampleRate() * log10(1.0 - rel2))),text); break; case 11: int2strng((int32_t)(200.0 * fParam12), text); break; case 12: if(mswap) strcpy(text, "S"); else strcpy(text, "M"); break; } } void mdaMultiBand::getParameterLabel(int32_t index, char *label) { switch(index) { case 0: strcpy(label, ""); break; case 1: strcpy(label, "Hz"); break; case 2: strcpy(label, "Hz"); break; case 3: strcpy(label, "dB"); break; case 4: strcpy(label, "dB"); break; case 5: strcpy(label, "dB"); break; case 6: strcpy(label, "dB"); break; case 7: strcpy(label, "dB"); break; case 8: strcpy(label, "dB"); break; case 9: strcpy(label, "�s"); break; case 10: strcpy(label, "ms"); break; case 11: strcpy(label, "% Width"); break; case 12: strcpy(label, ""); break; } } //-------------------------------------------------------------------------------- // process void mdaMultiBand::process(float **inputs, float **outputs, int32_t sampleFrames) { float *in1 = inputs[0]; float *in2 = inputs[1]; float *out1 = outputs[0]; float *out2 = outputs[1]; float a, b, c, d, l=fb3, m, h, s, sl=slev, tmp1, tmp2, tmp3; float f1i=fi1, f1o=fo1, f2i=fi2, f2o=fo2, b1=fb1, b2=fb2; float g1=gain1, /*d1=driv1,*/ t1=trim1, a1=att1, r1=1.f - rel1; float g2=gain2, d2=driv2, t2=trim2, a2=att2, r2=1.f - rel2; float g3=gain3, d3=driv3, t3=trim3, a3=att3, r3=1.f - rel3; int ms=mswap; --in1; --in2; --out1; --out2; while(--sampleFrames >= 0) { a = *++in1; b = *++in2; c = out1[1]; d = out2[1]; //process from here... b = (ms)? -b : b; s = (a - b) * sl; //keep stereo component for later a += b; b2 = (f2i * a) + (f2o * b2); //crossovers b1 = (f1i * b2) + (f1o * b1); l = (f1i * b1) + (f1o * l); m=b2-l; h=a-b2; tmp1 = (l>0)? l : -l; //l g1 = (tmp1>g1)? g1+a1*(tmp1-g1) : g1*r1; //tmp1 = 1.f / (1.f + d1 * g1); tmp2 = (m>0)? m : -m; g2 = (tmp2>g2)? g2+a2*(tmp2-g2) : g2*r2; tmp2 = 1.f / (1.f + d2 * g2); tmp3 = (h>0)? h : -h; g3 = (tmp3>g3)? g3+a3*(tmp3-g3) : g3*r3; tmp3 = 1.f / (1.f + d3 * g3); a = (l*tmp3*t1) + (m*tmp2*t2) + (h*tmp3*t3); c += a + s; // output d += (ms)? s - a : a - s; *++out1 = c; *++out2 = d; } gain1=(g1<1.0e-10)? 0.f : g1; gain2=(g2<1.0e-10)? 0.f : g2; gain3=(g3<1.0e-10)? 0.f : g3; // gain1=g1; gain2=g2; gain3=g3; if(fabs(b1)<1.0e-10) { fb1=0.f; fb2=0.f; fb3=0.f; } else { fb1=b1; fb2=b2; fb3=l; } } void mdaMultiBand::processReplacing(float **inputs, float **outputs, int32_t sampleFrames) { float *in1 = inputs[0]; float *in2 = inputs[1]; float *out1 = outputs[0]; float *out2 = outputs[1]; float a, b, c, d, l=fb3, m, h, s, sl=slev, tmp1, tmp2, tmp3; float f1i=fi1, f1o=fo1, f2i=fi2, f2o=fo2, b1=fb1, b2=fb2; float g1=gain1, /*d1=driv1,*/ t1=trim1, a1=att1, r1=1.f - rel1; float g2=gain2, d2=driv2, t2=trim2, a2=att2, r2=1.f - rel2; float g3=gain3, d3=driv3, t3=trim3, a3=att3, r3=1.f - rel3; int ms=mswap; --in1; --in2; --out1; --out2; while(--sampleFrames >= 0) { a = *++in1; b = *++in2; //process from here... b = (ms)? -b : b; s = (a - b) * sl; //keep stereo component for later a += b; b2 = (f2i * a) + (f2o * b2); //crossovers b1 = (f1i * b2) + (f1o * b1); l = (f1i * b1) + (f1o * l); m=b2-l; h=a-b2; tmp1 = (l>0)? l : -l; //l g1 = (tmp1>g1)? g1+a1*(tmp1-g1) : g1*r1; //tmp1 = 1.f / (1.f + d1 * g1); tmp2 = (m>0)? m : -m; g2 = (tmp2>g2)? g2+a2*(tmp2-g2) : g2*r2; tmp2 = 1.f / (1.f + d2 * g2); tmp3 = (h>0)? h : -h; g3 = (tmp3>g3)? g3+a3*(tmp3-g3) : g3*r3; tmp3 = 1.f / (1.f + d3 * g3); a = (l*tmp3*t1) + (m*tmp2*t2) + (h*tmp3*t3); c = a + s; // output d = (ms)? s - a : a - s; *++out1 = c; *++out2 = d; } gain1=(g1<1.0e-10)? 0.f : g1; gain2=(g2<1.0e-10)? 0.f : g2; gain3=(g3<1.0e-10)? 0.f : g3; // gain1=g1; gain2=g2; gain3=g3; if(fabs(b1)<1.0e-10) { fb1=0.f; fb2=0.f; fb3=0.f; } else { fb1=b1; fb2=b2; fb3=l; } } //g = (float)(1.0 / (1.0 + d1 * fabs(l)) ); //VCAs //if(g1>g) { g1=g1-a1*(g1-g); } else { g1=g1+r1*(g-g1); }