/* Resp: A programming language * Copyright (C) 2008-2009 David Robillard * * Resp is free software: you can redistribute it and/or modify it under * the terms of the GNU Affero General Public License as published by the * Free Software Foundation, either version 3 of the License, or (at your * option) any later version. * * Resp is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General * Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with Resp. If not, see . */ /** @file * @brief Compile to LLVM IR and/or execute via JIT */ #define __STDC_LIMIT_MACROS 1 #define __STDC_CONSTANT_MACROS 1 #include #include #include #include #include #include "llvm/Value.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/DerivedTypes.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Support/raw_os_ostream.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/StandardPasses.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetSelect.h" #include "llvm/Transforms/Scalar.h" #include "resp.hpp" using namespace llvm; using namespace std; using boost::format; /** LLVM Engine (Compiler and JIT) */ struct LLVMEngine : public Engine { LLVMEngine(); virtual ~LLVMEngine(); CFunc startFn(CEnv& cenv, const string& name, const ATuple* args, const ATuple* type); void pushFnArgs(CEnv& cenv, const ATuple* prot, const ATuple* type, CFunc f); void finishFn(CEnv& cenv, CFunc f, CVal ret, const AST* retT); void eraseFn(CEnv& cenv, CFunc f); CVal compileCall(CEnv& cenv, CFunc f, const ATuple* funcT, const vector& args); CVal compileCast(CEnv& cenv, CVal v, const AST* t); CVal compileCons(CEnv& cenv, const ATuple* type, CVal rtti, const vector& fields); CVal compileDot(CEnv& cenv, CVal tup, int32_t index); CVal compileGlobalSet(CEnv& cenv, const string& s, CVal v, const AST* t); CVal compileGlobalGet(CEnv& cenv, const string& s, CVal v); CVal compileIf(CEnv& cenv, const AST* cond, const AST* then, const AST* aelse); CVal compileLiteral(CEnv& cenv, const AST* lit); CVal compilePrimitive(CEnv& cenv, const ATuple* prim); CVal compileString(CEnv& cenv, const char* str); CType compileType(CEnv& cenv, const char* name, const AST* exp); void writeModule(CEnv& cenv, std::ostream& os); const string call(CEnv& cenv, CFunc f, const AST* retT); private: void appendBlock(LLVMEngine* engine, Function* function, BasicBlock* block) { function->getBasicBlockList().push_back(block); engine->builder.SetInsertPoint(block); } inline Value* llVal(CVal v) { return static_cast(v); } inline Function* llFunc(CFunc f) { return static_cast(f); } const Type* llType(const AST* t, const char* name=NULL); LLVMContext context; Module* module; ExecutionEngine* engine; IRBuilder<> builder; Function* alloc; FunctionPassManager* fnOpt; PassManager* modOpt; CType objectT; PATypeHolder* opaqueT; typedef std::map CTypes; CTypes compiledTypes; unsigned labelIndex; }; LLVMEngine::LLVMEngine() : builder(context) , opaqueT(NULL) , labelIndex(1) { InitializeNativeTarget(); module = new Module("resp", context); engine = EngineBuilder(module).create(); fnOpt = new FunctionPassManager(module); modOpt = new PassManager(); // Set up optimisers unsigned optLevel = 3; createStandardFunctionPasses(fnOpt, optLevel); createStandardModulePasses(modOpt, optLevel, false, true, true, true, false, NULL); // Declare host provided allocation primitive std::vector argsT(1, Type::getInt32Ty(context)); // unsigned size FunctionType* funcT = FunctionType::get( PointerType::get(Type::getInt8Ty(context), 0), argsT, false); alloc = Function::Create( funcT, Function::ExternalLinkage, "__resp_alloc", module); // Build Object type (tag only, binary compatible with any constructed thing) vector ctypes; ctypes.push_back(PointerType::get(Type::getInt8Ty(context), NULL)); // RTTI StructType* cObjectT = StructType::get(context, ctypes, false); module->addTypeName("Object", cObjectT); objectT = cObjectT; } LLVMEngine::~LLVMEngine() { delete engine; delete fnOpt; delete modOpt; } const Type* LLVMEngine::llType(const AST* t, const char* name) { if (t == NULL) { return NULL; } else if (AType::is_var(t)) { // Kludge for _me closure parameter, will be casted return PointerType::get(Type::getInt8Ty(context), NULL); } else if (AType::is_name(t)) { const std::string sym(t->as_symbol()->sym()); if (sym == "Nothing") return Type::getVoidTy(context); if (sym == "Bool") return Type::getInt1Ty(context); if (sym == "Int") return Type::getInt32Ty(context); if (sym == "Float") return Type::getFloatTy(context); if (sym == "String") return PointerType::get(Type::getInt8Ty(context), NULL); if (sym == "Symbol") return PointerType::get(Type::getInt8Ty(context), NULL); if (sym == "Expr") return PointerType::get(Type::getInt8Ty(context), NULL); if (sym == "__REC") { if (!opaqueT) throw; return *opaqueT;} CTypes::const_iterator i = compiledTypes.find(sym); if (i != compiledTypes.end()) return i->second; } if (!AType::is_expr(t)) return NULL; // Define opaque type to stand for name in recursive type body if (name) { THROW_IF(opaqueT, t->loc, "Nested recursive types"); opaqueT = new PATypeHolder(OpaqueType::get(context)); } const Type* ret; if (is_form(t, "Fn")) { ATuple::const_iterator i = t->as_tuple()->begin(); const ATuple* protT = (*++i)->to_tuple(); const AST* retT = (*++i); if (!llType(retT)) return NULL; vector cprot; FOREACHP(ATuple::const_iterator, i, protT) { const Type* lt = llType(*i); if (!lt) return NULL; cprot.push_back(lt); } ret = FunctionType::get(llType(retT), cprot, false); } else if (isupper(t->as_tuple()->fst()->str()[0])) { vector ctypes; ctypes.push_back(PointerType::get(Type::getInt8Ty(context), NULL)); // RTTI for (ATuple::const_iterator i = t->as_tuple()->iter_at(1); i != t->as_tuple()->end(); ++i) { const Type* lt = llType(*i); if (!lt) return NULL; ctypes.push_back(lt); } ret = StructType::get(context, ctypes, false); } if (!ret) { cerr << "WARNING: No low-level type for " << t << endl; return NULL; } // Tell LLVM opaqueT is actually ret* (for recursive types) const PointerType* ptrT(PointerType::get(ret, 0)); if (name) { PATypeHolder retT(ret); ((OpaqueType*)opaqueT->get())->refineAbstractTypeTo(ptrT); ptrT = cast(opaqueT->get()); // update potentially invalidated type opaqueT = NULL; module->addTypeName(name, retT.get()); } return ptrT; } /** Convert a size in bits to bytes, rounding up as necessary */ static inline size_t bitsToBytes(size_t bits) { return ((bits % 8 == 0) ? bits : (((bits / 8) + 1) * 8)) / 8; } CVal LLVMEngine::compileCall(CEnv& cenv, CFunc f, const ATuple* funcT, const vector& args) { vector llArgs(*reinterpret_cast*>(&args)); return builder.CreateCall(llFunc(f), llArgs.begin(), llArgs.end()); } CVal LLVMEngine::compileCast(CEnv& cenv, CVal v, const AST* t) { return builder.CreateBitCast(llVal(v), (const Type*)compileType(cenv, NULL, t), "cast"); } CVal LLVMEngine::compileCons(CEnv& cenv, const ATuple* type, CVal rtti, const vector& fields) { // Find size of memory required size_t s = engine->getTargetData()->getTypeSizeInBits( PointerType::get(Type::getInt8Ty(context), NULL)); assert(type->begin() != type->end()); for (ATuple::const_iterator i = type->iter_at(1); i != type->end(); ++i) s += engine->getTargetData()->getTypeSizeInBits( (const Type*)compileType(cenv, NULL, *i)); // Allocate struct const std::string name = type->fst()->str(); Value* structSize = ConstantInt::get(Type::getInt32Ty(context), bitsToBytes(s)); Value* mem = builder.CreateCall(alloc, structSize, name + "_mem"); Value* structPtr = builder.CreateBitCast(mem, llType(type), name); // Set struct fields if (rtti) builder.CreateStore((Value*)rtti, builder.CreateStructGEP(structPtr, 0, "rtti")); size_t i = 1; ATuple::const_iterator t = type->iter_at(1); for (vector::const_iterator f = fields.begin(); f != fields.end(); ++f, ++i, ++t) { Value* val = llVal(*f); Value* field = builder.CreateStructGEP( structPtr, i, (format("tup%1%") % i).str().c_str()); if ((*t)->to_tuple()) val = builder.CreateBitCast(val, llType(*t), "objPtr"); builder.CreateStore(val, field); } return structPtr; } CVal LLVMEngine::compileDot(CEnv& cenv, CVal tup, int32_t index) { Value* ptr = builder.CreateStructGEP(llVal(tup), index, "dotPtr"); return builder.CreateLoad(ptr, 0, "dotVal"); } CVal LLVMEngine::compileLiteral(CEnv& cenv, const AST* lit) { switch (lit->tag()) { case T_BOOL: return ConstantInt::get(Type::getInt1Ty(context), ((const ALiteral*)lit)->val); case T_FLOAT: return ConstantFP::get(Type::getFloatTy(context), ((const ALiteral*)lit)->val); case T_INT32: return ConstantInt::get(Type::getInt32Ty(context), ((const ALiteral*)lit)->val, true); default: throw Error(lit->loc, "Unknown literal type"); } } CVal LLVMEngine::compileString(CEnv& cenv, const char* str) { return builder.CreateGlobalStringPtr(str); } CType LLVMEngine::compileType(CEnv& cenv, const char* name, const AST* expr) { if (name) { CTypes::const_iterator i = compiledTypes.find(name); if (i != compiledTypes.end()) return i->second; } const Type* const type = llType(expr, name); if (name) compiledTypes.insert(make_pair(name, type)); return type; } CFunc LLVMEngine::startFn( CEnv& cenv, const std::string& name, const ATuple* args, const ATuple* type) { const ATuple* argsT = type->prot(); const AST* retT = type->list_last(); Function::LinkageTypes linkage = Function::ExternalLinkage; vector cprot; FOREACHP(ATuple::const_iterator, i, argsT) { const char* name = (*i)->to_symbol() ? (*i)->as_symbol()->sym() : NULL; CType iT = compileType(cenv, name, cenv.resolveType(*i)); THROW_IF(!iT, Cursor(), string("non-concrete parameter :: ") + (*i)->str()); cprot.push_back((const Type*)iT); } THROW_IF(!llType(retT), Cursor(), (format("return has non-concrete type `%1%'") % retT->str()).str()); const string llName = (name == "") ? cenv.penv.gensymstr("_fn") : name; FunctionType* fT = FunctionType::get(llType(retT), cprot, false); Function* f = Function::Create(fT, linkage, llName, module); // Note f->getName() may be different from llName // however LLVM chooses to mangle is fine, we keep a pointer // Set argument names in generated code Function::arg_iterator a = f->arg_begin(); for (ATuple::const_iterator i = args->begin(); i != args->end(); ++a, ++i) a->setName((*i)->as_symbol()->sym()); BasicBlock* bb = BasicBlock::Create(context, "entry", f); builder.SetInsertPoint(bb); return f; } void LLVMEngine::pushFnArgs(CEnv& cenv, const ATuple* prot, const ATuple* type, CFunc cfunc) { cenv.push(); const ATuple* argsT = type->prot(); Function* f = llFunc(cfunc); // Bind argument values in CEnv ATuple::const_iterator p = prot->begin(); ATuple::const_iterator pT = argsT->begin(); assert(prot->size() == argsT->size()); assert(prot->size() == f->num_args()); for (Function::arg_iterator a = f->arg_begin(); a != f->arg_end(); ++a, ++p, ++pT) { const AST* t = cenv.resolveType(*pT); // THROW_IF(!llType(t), (*p)->loc, "untyped parameter\n"); cenv.def((*p)->as_symbol(), *p, t, &*a); } } void LLVMEngine::finishFn(CEnv& cenv, CFunc f, CVal ret, const AST* retT) { if (retT->str() == "Nothing") builder.CreateRetVoid(); else builder.CreateRet(builder.CreateBitCast(llVal(ret), llType(retT), "ret")); if (verifyFunction(*static_cast(f), llvm::PrintMessageAction)) { module->dump(); throw Error(Cursor(), "Broken module"); } if (cenv.args.find("-g") == cenv.args.end()) fnOpt->run(*static_cast(f)); } void LLVMEngine::eraseFn(CEnv& cenv, CFunc f) { if (f) llFunc(f)->eraseFromParent(); } CVal LLVMEngine::compileIf(CEnv& cenv, const AST* cond, const AST* then, const AST* aelse) { LLVMEngine* engine = reinterpret_cast(cenv.engine()); BasicBlock* mergeBB = BasicBlock::Create(context, "endif"); Function* parent = engine->builder.GetInsertBlock()->getParent(); BasicBlock* thenBB = BasicBlock::Create(context, (format("then%1%") % labelIndex).str()); BasicBlock* nextBB = BasicBlock::Create(context, (format("else%1%") % labelIndex).str()); const AST* type = cenv.type(then); ++labelIndex; engine->builder.CreateCondBr(llVal(resp_compile(cenv, cond)), thenBB, nextBB); // Emit then block for this condition appendBlock(engine, parent, thenBB); Value* thenV = llVal(resp_compile(cenv, then)); engine->builder.CreateBr(mergeBB); appendBlock(engine, parent, nextBB); Value* elseV = NULL; if (aelse) { elseV = llVal(resp_compile(cenv, aelse)); engine->builder.CreateBr(mergeBB); } else { engine->builder.CreateUnreachable(); } // Emit end of final else block BasicBlock* elseBB = engine->builder.GetInsertBlock(); // Emit merge block (Phi node) appendBlock(engine, parent, mergeBB); PHINode* pn = engine->builder.CreatePHI(llType(type), "ifval"); pn->addIncoming(thenV, thenBB); if (elseV) pn->addIncoming(elseV, elseBB); return pn; } CVal LLVMEngine::compilePrimitive(CEnv& cenv, const ATuple* prim) { ATuple::const_iterator i = prim->iter_at(1); LLVMEngine* engine = reinterpret_cast(cenv.engine()); bool isFloat = cenv.type(prim)->str() == "Float"; Value* a = llVal(resp_compile(cenv, *i++)); Value* b = llVal(resp_compile(cenv, *i++)); const string n = prim->fst()->to_symbol()->str(); // Binary arithmetic operations Instruction::BinaryOps op = (Instruction::BinaryOps)0; if (n == "+") op = Instruction::Add; if (n == "-") op = Instruction::Sub; if (n == "*") op = Instruction::Mul; if (n == "and") op = Instruction::And; if (n == "or") op = Instruction::Or; if (n == "xor") op = Instruction::Xor; if (n == "/") op = isFloat ? Instruction::FDiv : Instruction::SDiv; if (n == "%") op = isFloat ? Instruction::FRem : Instruction::SRem; if (op != 0) { Value* val = engine->builder.CreateBinOp(op, a, b); while (i != prim->end()) val = engine->builder.CreateBinOp(op, val, llVal(resp_compile(cenv, *i++))); return val; } // Comparison operations CmpInst::Predicate pred = (CmpInst::Predicate)0; if (n == "=") pred = isFloat ? CmpInst::FCMP_OEQ : CmpInst::ICMP_EQ ; if (n == "!=") pred = isFloat ? CmpInst::FCMP_ONE : CmpInst::ICMP_NE ; if (n == ">") pred = isFloat ? CmpInst::FCMP_OGT : CmpInst::ICMP_SGT; if (n == ">=") pred = isFloat ? CmpInst::FCMP_OGE : CmpInst::ICMP_SGE; if (n == "<") pred = isFloat ? CmpInst::FCMP_OLT : CmpInst::ICMP_SLT; if (n == "<=") pred = isFloat ? CmpInst::FCMP_OLE : CmpInst::ICMP_SLE; if (pred != 0) { if (isFloat) return engine->builder.CreateFCmp(pred, a, b); else return engine->builder.CreateICmp(pred, a, b); } throw Error(prim->loc, "unknown primitive"); } CVal LLVMEngine::compileGlobalSet(CEnv& cenv, const string& sym, CVal val, const AST* type) { LLVMEngine* engine = reinterpret_cast(cenv.engine()); GlobalVariable* global = new GlobalVariable(*module, llType(type), false, GlobalValue::ExternalLinkage, Constant::getNullValue(llType(type)), sym); Value* valPtr = builder.CreateBitCast(llVal(val), llType(type), "globalPtr"); engine->builder.CreateStore(valPtr, global); return global; } CVal LLVMEngine::compileGlobalGet(CEnv& cenv, const string& sym, CVal val) { LLVMEngine* engine = reinterpret_cast(cenv.engine()); return engine->builder.CreateLoad(llVal(val), sym + "Ptr"); } void LLVMEngine::writeModule(CEnv& cenv, std::ostream& os) { if (cenv.args.find("-g") == cenv.args.end()) modOpt->run(*module); AssemblyAnnotationWriter writer; llvm::raw_os_ostream raw_stream(os); module->print(raw_stream, &writer); } const string LLVMEngine::call(CEnv& cenv, CFunc f, const AST* retT) { void* fp = engine->getPointerToFunction(llFunc(f)); const Type* t = llType(retT); THROW_IF(!fp, Cursor(), "unable to get function pointer"); THROW_IF(!t, Cursor(), "function with non-concrete return type called"); std::stringstream ss; if (t == Type::getInt32Ty(context)) { ss << ((int32_t (*)())fp)(); } else if (t == Type::getFloatTy(context)) { ss << showpoint << ((float (*)())fp)(); } else if (t == Type::getInt1Ty(context)) { ss << (((bool (*)())fp)() ? "#t" : "#f"); } else if (retT->str() == "String") { const std::string s(((char* (*)())fp)()); ss << "\""; for (std::string::const_iterator i = s.begin(); i != s.end(); ++i) { switch (*i) { case '\"': case '\\': ss << '\\'; default: ss << *i; break; } } ss << "\""; } else if (retT->str() == "Symbol") { const std::string s(((char* (*)())fp)()); ss << s; } else if (t != Type::getVoidTy(context)) { ss << ((void* (*)())fp)(); } else { ((void (*)())fp)(); } return ss.str(); } Engine* resp_new_llvm_engine() { return new LLVMEngine(); }