/* Copyright 2011-2017 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "serd_internal.h" #include #include #include #include #include #include #include #include #define NS_XSD "http://www.w3.org/2001/XMLSchema#" #define NS_RDF "http://www.w3.org/1999/02/22-rdf-syntax-ns#" #define TRY_THROW(exp) if (!(exp)) goto except; #define TRY_RET(exp) if (!(exp)) return 0; #ifdef SERD_STACK_CHECK # define SERD_STACK_ASSERT_TOP(reader, ref) \ assert(ref == reader->allocs[reader->n_allocs - 1]); #else # define SERD_STACK_ASSERT_TOP(reader, ref) #endif typedef struct { const uint8_t* filename; unsigned line; unsigned col; } Cursor; typedef uint32_t uchar; /* Reference to a node in the stack (we can not use pointers since the stack may be reallocated, invalidating any pointers to elements). */ typedef size_t Ref; typedef struct { Ref graph; Ref subject; Ref predicate; Ref object; Ref datatype; Ref lang; SerdStatementFlags* flags; } ReadContext; struct SerdReaderImpl { void* handle; void (*free_handle)(void* ptr); SerdBaseSink base_sink; SerdPrefixSink prefix_sink; SerdStatementSink statement_sink; SerdEndSink end_sink; SerdErrorSink error_sink; void* error_handle; Ref rdf_first; Ref rdf_rest; Ref rdf_nil; SerdNode default_graph; SerdByteSource source; SerdStack stack; SerdSyntax syntax; unsigned next_id; Cursor cur; SerdStatus status; uint8_t* buf; uint8_t* bprefix; size_t bprefix_len; bool strict; ///< True iff strict parsing bool eof; bool seen_genid; #ifdef SERD_STACK_CHECK Ref* allocs; ///< Stack of push offsets size_t n_allocs; ///< Number of stack pushes #endif }; static inline bool fancy_syntax(const SerdReader* reader) { return reader->syntax == SERD_TURTLE || reader->syntax == SERD_TRIG; } static int r_err(SerdReader* reader, SerdStatus st, const char* fmt, ...) { va_list args; va_start(args, fmt); const SerdError e = { st, reader->cur.filename, reader->cur.line, reader->cur.col, fmt, &args }; serd_error(reader->error_sink, reader->error_handle, &e); va_end(args); return 0; } /** fread-like wrapper for getc (which is faster). */ static size_t serd_file_read_byte(void* buf, size_t size, size_t nmemb, void* stream) { const int c = getc((FILE*)stream); if (c == EOF) { *((uint8_t*)buf) = 0; return 0; } *((uint8_t*)buf) = (uint8_t)c; return 1; } static inline uint8_t peek_byte(SerdReader* reader) { return serd_byte_source_peek(&reader->source); } static inline uint8_t eat_byte_safe(SerdReader* reader, const uint8_t byte) { assert(peek_byte(reader) == byte); switch (byte) { case '\0': reader->eof = (byte != '\0'); break; case '\n': ++reader->cur.line; reader->cur.col = 0; break; default: ++reader->cur.col; } reader->status = serd_byte_source_advance(&reader->source); return byte; } static inline uint8_t eat_byte_check(SerdReader* reader, const uint8_t byte) { const uint8_t c = peek_byte(reader); if (c != byte) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "expected `%c', not `%c'\n", byte, c); } return eat_byte_safe(reader, byte); } static inline bool eat_string(SerdReader* reader, const char* str, unsigned n) { bool bad = false; for (unsigned i = 0; i < n; ++i) { bad |= (bool)eat_byte_check(reader, ((const uint8_t*)str)[i]); } return bad; } static Ref push_node_padded(SerdReader* reader, size_t maxlen, SerdType type, const char* str, size_t n_bytes) { void* mem = serd_stack_push_aligned( &reader->stack, sizeof(SerdNode) + maxlen + 1, sizeof(SerdNode)); SerdNode* const node = (SerdNode*)mem; node->n_bytes = node->n_chars = n_bytes; node->flags = 0; node->type = type; node->buf = NULL; uint8_t* buf = (uint8_t*)(node + 1); memcpy(buf, str, n_bytes + 1); #ifdef SERD_STACK_CHECK reader->allocs = realloc( reader->allocs, sizeof(reader->allocs) * (++reader->n_allocs)); reader->allocs[reader->n_allocs - 1] = ((uint8_t*)mem - reader->stack.buf); #endif return (uint8_t*)node - reader->stack.buf; } static Ref push_node(SerdReader* reader, SerdType type, const char* str, size_t n_bytes) { return push_node_padded(reader, n_bytes, type, str, n_bytes); } static inline SerdNode* deref(SerdReader* reader, const Ref ref) { if (ref) { SerdNode* node = (SerdNode*)(reader->stack.buf + ref); node->buf = (uint8_t*)node + sizeof(SerdNode); return node; } return NULL; } static inline void push_byte(SerdReader* reader, Ref ref, const uint8_t c) { SERD_STACK_ASSERT_TOP(reader, ref); uint8_t* const s = serd_stack_push(&reader->stack, 1); SerdNode* const node = (SerdNode*)(reader->stack.buf + ref); ++node->n_bytes; if (!(c & 0x80)) { // Starts with 0 bit, start of new character ++node->n_chars; } *(s - 1) = c; *s = '\0'; } static inline void push_bytes(SerdReader* reader, Ref ref, const uint8_t* bytes, unsigned len) { for (unsigned i = 0; i < len; ++i) { push_byte(reader, ref, bytes[i]); } } static Ref pop_node(SerdReader* reader, Ref ref) { if (ref && ref != reader->rdf_first && ref != reader->rdf_rest && ref != reader->rdf_nil) { #ifdef SERD_STACK_CHECK SERD_STACK_ASSERT_TOP(reader, ref); --reader->n_allocs; #endif SerdNode* const node = deref(reader, ref); uint8_t* const top = reader->stack.buf + reader->stack.size; serd_stack_pop_aligned(&reader->stack, top - (uint8_t*)node); } return 0; } static inline bool emit_statement(SerdReader* reader, ReadContext ctx, Ref o, Ref d, Ref l) { SerdNode* graph = deref(reader, ctx.graph); if (!graph && reader->default_graph.buf) { graph = &reader->default_graph; } bool ret = !reader->statement_sink || !reader->statement_sink( reader->handle, *ctx.flags, graph, deref(reader, ctx.subject), deref(reader, ctx.predicate), deref(reader, o), deref(reader, d), deref(reader, l)); *ctx.flags &= SERD_ANON_CONT|SERD_LIST_CONT; // Preserve only cont flags return ret; } static bool read_collection(SerdReader* reader, ReadContext ctx, Ref* dest); static bool read_predicateObjectList(SerdReader* reader, ReadContext ctx, bool* ate_dot); static inline uint8_t read_HEX(SerdReader* reader) { const uint8_t c = peek_byte(reader); if (is_digit(c) || in_range(c, 'A', 'F') || in_range(c, 'a', 'f')) { return eat_byte_safe(reader, c); } return r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid hexadecimal digit `%c'\n", c); } // Read UCHAR escape, initial \ is already eaten by caller static inline bool read_UCHAR(SerdReader* reader, Ref dest, uint32_t* char_code) { const uint8_t b = peek_byte(reader); unsigned length = 0; switch (b) { case 'U': length = 8; break; case 'u': length = 4; break; default: return false; } eat_byte_safe(reader, b); uint8_t buf[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; for (unsigned i = 0; i < length; ++i) { if (!(buf[i] = read_HEX(reader))) { return false; } } uint32_t code; sscanf((const char*)buf, "%X", &code); unsigned size = 0; if (code < 0x00000080) { size = 1; } else if (code < 0x00000800) { size = 2; } else if (code < 0x00010000) { size = 3; } else if (code < 0x00110000) { size = 4; } else { r_err(reader, SERD_ERR_BAD_SYNTAX, "unicode character 0x%X out of range\n", code); push_bytes(reader, dest, replacement_char, 3); *char_code = 0xFFFD; return true; } // Build output in buf // (Note # of bytes = # of leading 1 bits in first byte) uint32_t c = code; switch (size) { case 4: buf[3] = 0x80 | (uint8_t)(c & 0x3F); c >>= 6; c |= (16 << 12); // set bit 4 case 3: buf[2] = 0x80 | (uint8_t)(c & 0x3F); c >>= 6; c |= (32 << 6); // set bit 5 case 2: buf[1] = 0x80 | (uint8_t)(c & 0x3F); c >>= 6; c |= 0xC0; // set bits 6 and 7 case 1: buf[0] = (uint8_t)c; } push_bytes(reader, dest, buf, size); *char_code = code; return true; } // Read ECHAR escape, initial \ is already eaten by caller static inline bool read_ECHAR(SerdReader* reader, Ref dest, SerdNodeFlags* flags) { const uint8_t c = peek_byte(reader); switch (c) { case 't': eat_byte_safe(reader, 't'); push_byte(reader, dest, '\t'); return true; case 'b': eat_byte_safe(reader, 'b'); push_byte(reader, dest, '\b'); return true; case 'n': *flags |= SERD_HAS_NEWLINE; eat_byte_safe(reader, 'n'); push_byte(reader, dest, '\n'); return true; case 'r': *flags |= SERD_HAS_NEWLINE; eat_byte_safe(reader, 'r'); push_byte(reader, dest, '\r'); return true; case 'f': eat_byte_safe(reader, 'f'); push_byte(reader, dest, '\f'); return true; case '\\': case '"': case '\'': push_byte(reader, dest, eat_byte_safe(reader, c)); return true; default: return false; } } static inline SerdStatus bad_char(SerdReader* reader, const char* fmt, uint8_t c) { // Skip bytes until the next start byte for (uint8_t b = peek_byte(reader); (b & 0x80);) { eat_byte_safe(reader, b); b = peek_byte(reader); } r_err(reader, SERD_ERR_BAD_SYNTAX, fmt, c); return reader->strict ? SERD_ERR_BAD_SYNTAX : SERD_FAILURE; } static SerdStatus read_utf8_bytes(SerdReader* reader, uint8_t bytes[4], uint32_t* size, uint8_t c) { *size = utf8_num_bytes(c); if (*size <= 1 || *size > 4) { return bad_char(reader, "invalid UTF-8 start 0x%X\n", c); } bytes[0] = c; for (unsigned i = 1; i < *size; ++i) { if (((bytes[i] = peek_byte(reader)) & 0x80) == 0) { return bad_char(reader, "invalid UTF-8 continuation 0x%X\n", bytes[i]); } eat_byte_safe(reader, bytes[i]); } return SERD_SUCCESS; } static SerdStatus read_utf8_character(SerdReader* reader, Ref dest, uint8_t c) { uint32_t size; uint8_t bytes[4]; SerdStatus st = read_utf8_bytes(reader, bytes, &size, c); if (st) { push_bytes(reader, dest, replacement_char, 3); } else { push_bytes(reader, dest, bytes, size); } return st; } static SerdStatus read_utf8_code(SerdReader* reader, Ref dest, uint32_t* code, uint8_t c) { uint32_t size; uint8_t bytes[4]; SerdStatus st = read_utf8_bytes(reader, bytes, &size, c); if (st) { push_bytes(reader, dest, replacement_char, 3); return st; } push_bytes(reader, dest, bytes, size); *code = parse_counted_utf8_char(bytes, size); return st; } // Read one character (possibly multi-byte) // The first byte, c, has already been eaten by caller static inline SerdStatus read_character(SerdReader* reader, Ref dest, SerdNodeFlags* flags, uint8_t c) { if (!(c & 0x80)) { switch (c) { case 0xA: case 0xD: *flags |= SERD_HAS_NEWLINE; break; case '"': case '\'': *flags |= SERD_HAS_QUOTE; break; } push_byte(reader, dest, c); return SERD_SUCCESS; } return read_utf8_character(reader, dest, c); } // [10] comment ::= '#' ( [^#xA #xD] )* static void read_comment(SerdReader* reader) { eat_byte_safe(reader, '#'); uint8_t c; while (((c = peek_byte(reader)) != 0xA) && (c != 0xD) && c) { eat_byte_safe(reader, c); } } // [24] ws ::= #x9 | #xA | #xD | #x20 | comment static inline bool read_ws(SerdReader* reader) { const uint8_t c = peek_byte(reader); switch (c) { case 0x9: case 0xA: case 0xD: case 0x20: eat_byte_safe(reader, c); return true; case '#': read_comment(reader); return true; default: return false; } } static inline bool read_ws_star(SerdReader* reader) { while (read_ws(reader)) {} return true; } static inline bool peek_delim(SerdReader* reader, const char delim) { read_ws_star(reader); return peek_byte(reader) == delim; } static inline bool eat_delim(SerdReader* reader, const char delim) { if (peek_delim(reader, delim)) { eat_byte_safe(reader, delim); return read_ws_star(reader); } return false; } // STRING_LITERAL_LONG_QUOTE and STRING_LITERAL_LONG_SINGLE_QUOTE // Initial triple quotes are already eaten by caller static Ref read_STRING_LITERAL_LONG(SerdReader* reader, SerdNodeFlags* flags, uint8_t q) { Ref ref = push_node(reader, SERD_LITERAL, "", 0); while (!reader->status) { const uint8_t c = peek_byte(reader); uint32_t code; switch (c) { case '\\': eat_byte_safe(reader, c); if (!read_ECHAR(reader, ref, flags) && !read_UCHAR(reader, ref, &code)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid escape `\\%c'\n", peek_byte(reader)); return pop_node(reader, ref); } break; default: if (c == q) { eat_byte_safe(reader, q); const uint8_t q2 = eat_byte_safe(reader, peek_byte(reader)); const uint8_t q3 = peek_byte(reader); if (q2 == q && q3 == q) { // End of string eat_byte_safe(reader, q3); return ref; } *flags |= SERD_HAS_QUOTE; push_byte(reader, ref, c); read_character(reader, ref, flags, q2); } else { read_character(reader, ref, flags, eat_byte_safe(reader, c)); } } } return ref; } // STRING_LITERAL_QUOTE and STRING_LITERAL_SINGLE_QUOTE // Initial quote is already eaten by caller static Ref read_STRING_LITERAL(SerdReader* reader, SerdNodeFlags* flags, uint8_t q) { Ref ref = push_node(reader, SERD_LITERAL, "", 0); while (!reader->status) { const uint8_t c = peek_byte(reader); uint32_t code = 0; switch (c) { case '\n': case '\r': r_err(reader, SERD_ERR_BAD_SYNTAX, "line end in short string\n"); return pop_node(reader, ref); case '\\': eat_byte_safe(reader, c); if (!read_ECHAR(reader, ref, flags) && !read_UCHAR(reader, ref, &code)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid escape `\\%c'\n", peek_byte(reader)); return pop_node(reader, ref); } break; default: if (c == q) { eat_byte_check(reader, q); return ref; } else { read_character(reader, ref, flags, eat_byte_safe(reader, c)); } } } eat_byte_check(reader, q); return ref; } static Ref read_String(SerdReader* reader, SerdNodeFlags* flags) { const uint8_t q1 = peek_byte(reader); eat_byte_safe(reader, q1); const uint8_t q2 = peek_byte(reader); if (q2 != q1) { // Short string (not triple quoted) return read_STRING_LITERAL(reader, flags, q1); } eat_byte_safe(reader, q2); const uint8_t q3 = peek_byte(reader); if (q3 != q1) { // Empty short string ("" or '') return push_node(reader, SERD_LITERAL, "", 0); } if (!fancy_syntax(reader)) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "syntax does not support long literals\n"); } eat_byte_safe(reader, q3); return read_STRING_LITERAL_LONG(reader, flags, q1); } static inline bool is_PN_CHARS_BASE(const uint32_t c) { return ((c >= 0x00C0 && c <= 0x00D6) || (c >= 0x00D8 && c <= 0x00F6) || (c >= 0x00F8 && c <= 0x02FF) || (c >= 0x0370 && c <= 0x037D) || (c >= 0x037F && c <= 0x1FFF) || (c >= 0x200C && c <= 0x200D) || (c >= 0x2070 && c <= 0x218F) || (c >= 0x2C00 && c <= 0x2FEF) || (c >= 0x3001 && c <= 0xD7FF) || (c >= 0xF900 && c <= 0xFDCF) || (c >= 0xFDF0 && c <= 0xFFFD) || (c >= 0x10000 && c <= 0xEFFFF)); } static SerdStatus read_PN_CHARS_BASE(SerdReader* reader, Ref dest) { uint32_t code; const uint8_t c = peek_byte(reader); SerdStatus st = SERD_SUCCESS; if (is_alpha(c)) { push_byte(reader, dest, eat_byte_safe(reader, c)); } else if (!(c & 0x80)) { return SERD_FAILURE; } else if ((st = read_utf8_code(reader, dest, &code, eat_byte_safe(reader, c)))) { return st; } else if (!is_PN_CHARS_BASE(code)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid character U+%04X in name\n", code); if (reader->strict) { return SERD_ERR_BAD_SYNTAX; } } return st; } static inline bool is_PN_CHARS(const uint32_t c) { return (is_PN_CHARS_BASE(c) || c == 0xB7 || (c >= 0x0300 && c <= 0x036F) || (c >= 0x203F && c <= 0x2040)); } static SerdStatus read_PN_CHARS(SerdReader* reader, Ref dest) { uint32_t code; const uint8_t c = peek_byte(reader); SerdStatus st = SERD_SUCCESS; if (is_alpha(c) || is_digit(c) || c == '_' || c == '-') { push_byte(reader, dest, eat_byte_safe(reader, c)); } else if (!(c & 0x80)) { return SERD_FAILURE; } else if ((st = read_utf8_code(reader, dest, &code, eat_byte_safe(reader, c)))) { return st; } else if (!is_PN_CHARS(code)) { r_err(reader, (st = SERD_ERR_BAD_SYNTAX), "invalid character U+%04X in name\n", code); } return st; } static bool read_PERCENT(SerdReader* reader, Ref dest) { push_byte(reader, dest, eat_byte_safe(reader, '%')); const uint8_t h1 = read_HEX(reader); const uint8_t h2 = read_HEX(reader); if (h1 && h2) { push_byte(reader, dest, h1); push_byte(reader, dest, h2); return true; } return false; } static SerdStatus read_PLX(SerdReader* reader, Ref dest) { uint8_t c = peek_byte(reader); switch (c) { case '%': if (!read_PERCENT(reader, dest)) { return SERD_ERR_BAD_SYNTAX; } return SERD_SUCCESS; case '\\': eat_byte_safe(reader, c); if (is_alpha(c = peek_byte(reader))) { // Escapes like \u \n etc. are not supported return SERD_ERR_BAD_SYNTAX; } // Allow escaping of pretty much any other character push_byte(reader, dest, eat_byte_safe(reader, c)); return SERD_SUCCESS; default: return SERD_FAILURE; } } static SerdStatus read_PN_LOCAL(SerdReader* reader, Ref dest, bool* ate_dot) { uint8_t c = peek_byte(reader); SerdStatus st = SERD_SUCCESS; switch (c) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case ':': case '_': push_byte(reader, dest, eat_byte_safe(reader, c)); break; default: if ((st = read_PLX(reader, dest)) > SERD_FAILURE) { return st; } else if (st != SERD_SUCCESS && read_PN_CHARS_BASE(reader, dest)) { return SERD_FAILURE; } } while ((c = peek_byte(reader))) { // Middle: (PN_CHARS | '.' | ';')* if (c == '.' || c == ':') { push_byte(reader, dest, eat_byte_safe(reader, c)); } else if ((st = read_PLX(reader, dest)) > SERD_FAILURE) { return st; } else if (st != SERD_SUCCESS && (st = read_PN_CHARS(reader, dest))) { break; } } SerdNode* const n = deref(reader, dest); if (n->buf[n->n_bytes - 1] == '.') { // Ate trailing dot, pop it from stack/node and inform caller --n->n_bytes; serd_stack_pop(&reader->stack, 1); *ate_dot = true; } return (st > SERD_FAILURE) ? st : SERD_SUCCESS; } // Read the remainder of a PN_PREFIX after some initial characters static SerdStatus read_PN_PREFIX_tail(SerdReader* reader, Ref dest) { uint8_t c; while ((c = peek_byte(reader))) { // Middle: (PN_CHARS | '.')* if (c == '.') { push_byte(reader, dest, eat_byte_safe(reader, c)); } else if (read_PN_CHARS(reader, dest)) { break; } } const SerdNode* const n = deref(reader, dest); if (n->buf[n->n_bytes - 1] == '.' && read_PN_CHARS(reader, dest)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "prefix ends with `.'\n"); return SERD_ERR_BAD_SYNTAX; } return SERD_SUCCESS; } static SerdStatus read_PN_PREFIX(SerdReader* reader, Ref dest) { if (!read_PN_CHARS_BASE(reader, dest)) { return read_PN_PREFIX_tail(reader, dest); } return SERD_FAILURE; } static Ref read_LANGTAG(SerdReader* reader) { uint8_t c = peek_byte(reader); if (!is_alpha(c)) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "unexpected `%c'\n", c); } Ref ref = push_node(reader, SERD_LITERAL, "", 0); push_byte(reader, ref, eat_byte_safe(reader, c)); while ((c = peek_byte(reader)) && is_alpha(c)) { push_byte(reader, ref, eat_byte_safe(reader, c)); } while (peek_byte(reader) == '-') { push_byte(reader, ref, eat_byte_safe(reader, '-')); while ((c = peek_byte(reader)) && (is_alpha(c) || is_digit(c))) { push_byte(reader, ref, eat_byte_safe(reader, c)); } } return ref; } static bool read_IRIREF_scheme(SerdReader* reader, Ref dest) { uint8_t c = peek_byte(reader); if (!isalpha(c)) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "bad IRI scheme start `%c'\n", c); } while ((c = peek_byte(reader))) { if (c == '>') { return r_err(reader, SERD_ERR_BAD_SYNTAX, "missing IRI scheme\n"); } else if (!is_uri_scheme_char(c)) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "bad IRI scheme char `%X'\n", c); } push_byte(reader, dest, eat_byte_safe(reader, c)); if (c == ':') { return true; // End of scheme } } return false; } static Ref read_IRIREF(SerdReader* reader) { TRY_RET(eat_byte_check(reader, '<')); Ref ref = push_node(reader, SERD_URI, "", 0); if (!fancy_syntax(reader) && !read_IRIREF_scheme(reader, ref)) { return pop_node(reader, ref); } uint32_t code = 0; while (!reader->status) { const uint8_t c = eat_byte_safe(reader, peek_byte(reader)); switch (c) { case '"': case '<': case '^': case '`': case '{': case '|': case '}': r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid IRI character `%c'\n", c); return pop_node(reader, ref); case '>': return ref; case '\\': if (!read_UCHAR(reader, ref, &code)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid IRI escape\n"); return pop_node(reader, ref); } switch (code) { case 0: case ' ': case '<': case '>': r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid escaped IRI character %X %c\n", code, code); return pop_node(reader, ref); } break; default: if (c <= 0x20) { if (isprint(c)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid IRI character `%c' (escape %%%02X)\n", c, c); } else { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid IRI character (escape %%%02X)\n", c, c); } if (reader->strict) { return pop_node(reader, ref); } reader->status = SERD_FAILURE; push_byte(reader, ref, c); } else if (!(c & 0x80)) { push_byte(reader, ref, c); } else if (read_utf8_character(reader, ref, c)) { if (reader->strict) { return pop_node(reader, ref); } reader->status = SERD_FAILURE; } } } return pop_node(reader, ref); } static bool read_PrefixedName(SerdReader* reader, Ref dest, bool read_prefix, bool* ate_dot) { if (read_prefix && read_PN_PREFIX(reader, dest) > SERD_FAILURE) { return false; } else if (peek_byte(reader) != ':') { return false; } push_byte(reader, dest, eat_byte_safe(reader, ':')); return read_PN_LOCAL(reader, dest, ate_dot) <= SERD_FAILURE; } static bool read_0_9(SerdReader* reader, Ref str, bool at_least_one) { unsigned count = 0; for (uint8_t c; is_digit((c = peek_byte(reader))); ++count) { push_byte(reader, str, eat_byte_safe(reader, c)); } if (at_least_one && count == 0) { r_err(reader, SERD_ERR_BAD_SYNTAX, "expected digit\n"); } return count; } static bool read_number(SerdReader* reader, Ref* dest, Ref* datatype, bool* ate_dot) { #define XSD_DECIMAL NS_XSD "decimal" #define XSD_DOUBLE NS_XSD "double" #define XSD_INTEGER NS_XSD "integer" Ref ref = push_node(reader, SERD_LITERAL, "", 0); uint8_t c = peek_byte(reader); bool has_decimal = false; if (c == '-' || c == '+') { push_byte(reader, ref, eat_byte_safe(reader, c)); } if ((c = peek_byte(reader)) == '.') { has_decimal = true; // decimal case 2 (e.g. '.0' or `-.0' or `+.0') push_byte(reader, ref, eat_byte_safe(reader, c)); TRY_THROW(read_0_9(reader, ref, true)); } else { // all other cases ::= ( '-' | '+' ) [0-9]+ ( . )? ( [0-9]+ )? ... TRY_THROW(is_digit(c)); read_0_9(reader, ref, true); if ((c = peek_byte(reader)) == '.') { has_decimal = true; // Annoyingly, dot can be end of statement, so tentatively eat eat_byte_safe(reader, c); c = peek_byte(reader); if (!is_digit(c) && c != 'e' && c != 'E') { *dest = ref; *ate_dot = true; // Force caller to deal with stupid grammar return true; // Next byte is not a number character, done } push_byte(reader, ref, '.'); read_0_9(reader, ref, false); } } c = peek_byte(reader); if (c == 'e' || c == 'E') { // double push_byte(reader, ref, eat_byte_safe(reader, c)); switch ((c = peek_byte(reader))) { case '+': case '-': push_byte(reader, ref, eat_byte_safe(reader, c)); default: break; } TRY_THROW(read_0_9(reader, ref, true)); *datatype = push_node(reader, SERD_URI, XSD_DOUBLE, sizeof(XSD_DOUBLE) - 1); } else if (has_decimal) { *datatype = push_node(reader, SERD_URI, XSD_DECIMAL, sizeof(XSD_DECIMAL) - 1); } else { *datatype = push_node(reader, SERD_URI, XSD_INTEGER, sizeof(XSD_INTEGER) - 1); } *dest = ref; return true; except: pop_node(reader, *datatype); pop_node(reader, ref); return r_err(reader, SERD_ERR_BAD_SYNTAX, "bad number syntax\n"); } static bool read_iri(SerdReader* reader, Ref* dest, bool* ate_dot) { switch (peek_byte(reader)) { case '<': *dest = read_IRIREF(reader); return true; default: *dest = push_node(reader, SERD_CURIE, "", 0); return read_PrefixedName(reader, *dest, true, ate_dot); } } static bool read_literal(SerdReader* reader, Ref* dest, Ref* datatype, Ref* lang, SerdNodeFlags* flags, bool* ate_dot) { Ref str = read_String(reader, flags); if (!str) { return false; } switch (peek_byte(reader)) { case '@': eat_byte_safe(reader, '@'); TRY_THROW(*lang = read_LANGTAG(reader)); break; case '^': eat_byte_safe(reader, '^'); eat_byte_check(reader, '^'); TRY_THROW(read_iri(reader, datatype, ate_dot)); break; } *dest = str; return true; except: *datatype = pop_node(reader, *datatype); *lang = pop_node(reader, *lang); pop_node(reader, str); return r_err(reader, SERD_ERR_BAD_SYNTAX, "bad literal syntax\n"); } inline static bool is_token_end(uint8_t c) { switch (c) { case 0x9: case 0xA: case 0xD: case 0x20: case '\0': case '#': case '.': case ';': case '<': return true; default: return false; } } static bool read_verb(SerdReader* reader, Ref* dest) { if (peek_byte(reader) == '<') { return (*dest = read_IRIREF(reader)); } /* Either a qname, or "a". Read the prefix first, and if it is in fact "a", produce that instead. */ *dest = push_node(reader, SERD_CURIE, "", 0); SerdNode* node = deref(reader, *dest); const SerdStatus st = read_PN_PREFIX(reader, *dest); bool ate_dot = false; if (!st && node->n_bytes == 1 && node->buf[0] == 'a' && is_token_end(peek_byte(reader))) { pop_node(reader, *dest); return (*dest = push_node(reader, SERD_URI, NS_RDF "type", 47)); } else if (st > SERD_FAILURE || !read_PrefixedName(reader, *dest, false, &ate_dot) || ate_dot) { *dest = pop_node(reader, *dest); return r_err(reader, SERD_ERR_BAD_SYNTAX, "bad verb\n"); } return true; } static Ref read_BLANK_NODE_LABEL(SerdReader* reader, bool* ate_dot) { eat_byte_safe(reader, '_'); eat_byte_check(reader, ':'); Ref ref = push_node(reader, SERD_BLANK, reader->bprefix ? (char*)reader->bprefix : "", reader->bprefix_len); uint8_t c = peek_byte(reader); // First: (PN_CHARS | '_' | [0-9]) if (is_digit(c) || c == '_') { push_byte(reader, ref, eat_byte_safe(reader, c)); } else if (read_PN_CHARS(reader, ref)) { r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid name start character\n"); return pop_node(reader, ref); } while ((c = peek_byte(reader))) { // Middle: (PN_CHARS | '.')* if (c == '.') { push_byte(reader, ref, eat_byte_safe(reader, c)); } else if (read_PN_CHARS(reader, ref)) { break; } } SerdNode* n = deref(reader, ref); if (n->buf[n->n_bytes - 1] == '.' && read_PN_CHARS(reader, ref)) { // Ate trailing dot, pop it from stack/node and inform caller --n->n_bytes; serd_stack_pop(&reader->stack, 1); *ate_dot = true; } if (reader->syntax == SERD_TURTLE) { if (is_digit(n->buf[reader->bprefix_len + 1])) { if ((n->buf[reader->bprefix_len]) == 'b') { ((char*)n->buf)[reader->bprefix_len] = 'B'; // Prevent clash reader->seen_genid = true; } else if (reader->seen_genid && n->buf[reader->bprefix_len] == 'B') { r_err(reader, SERD_ERR_ID_CLASH, "found both `b' and `B' blank IDs, prefix required\n"); return pop_node(reader, ref); } } } return ref; } static void set_blank_id(SerdReader* reader, Ref ref, size_t buf_size) { SerdNode* node = deref(reader, ref); const char* prefix = reader->bprefix ? (const char*)reader->bprefix : ""; node->n_bytes = node->n_chars = snprintf( (char*)node->buf, buf_size, "%sb%u", prefix, reader->next_id++); } static size_t genid_size(SerdReader* reader) { return reader->bprefix_len + 1 + 10 + 1; // + "b" + UINT32_MAX + \0 } static Ref blank_id(SerdReader* reader) { Ref ref = push_node_padded(reader, genid_size(reader), SERD_BLANK, "", 0); set_blank_id(reader, ref, genid_size(reader)); return ref; } static Ref read_blankName(SerdReader* reader) { eat_byte_safe(reader, '='); if (eat_byte_check(reader, '=') != '=') { return r_err(reader, SERD_ERR_BAD_SYNTAX, "expected `='\n"); } Ref subject = 0; bool ate_dot = false; read_ws_star(reader); read_iri(reader, &subject, &ate_dot); return subject; } static bool read_anon(SerdReader* reader, ReadContext ctx, bool subject, Ref* dest) { const SerdStatementFlags old_flags = *ctx.flags; bool empty; eat_byte_safe(reader, '['); if ((empty = peek_delim(reader, ']'))) { *ctx.flags |= (subject) ? SERD_EMPTY_S : SERD_EMPTY_O; } else { *ctx.flags |= (subject) ? SERD_ANON_S_BEGIN : SERD_ANON_O_BEGIN; if (peek_delim(reader, '=')) { if (!(*dest = read_blankName(reader)) || !eat_delim(reader, ';')) { return false; } } } if (!*dest) { *dest = blank_id(reader); } if (ctx.subject) { TRY_RET(emit_statement(reader, ctx, *dest, 0, 0)); } ctx.subject = *dest; if (!empty) { *ctx.flags &= ~(SERD_LIST_CONT); if (!subject) { *ctx.flags |= SERD_ANON_CONT; } bool ate_dot_in_list = false; read_predicateObjectList(reader, ctx, &ate_dot_in_list); if (ate_dot_in_list) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "`.' inside blank\n"); } read_ws_star(reader); if (reader->end_sink) { reader->end_sink(reader->handle, deref(reader, *dest)); } *ctx.flags = old_flags; } return (eat_byte_check(reader, ']') == ']'); } /* If emit is true: recurses, calling statement_sink for every statement encountered, and leaves stack in original calling state (i.e. pops everything it pushes). */ static bool read_object(SerdReader* reader, ReadContext* ctx, bool emit, bool* ate_dot) { static const char* const XSD_BOOLEAN = NS_XSD "boolean"; static const size_t XSD_BOOLEAN_LEN = 40; #ifndef NDEBUG const size_t orig_stack_size = reader->stack.size; #endif bool ret = false; bool simple = (ctx->subject != 0); SerdNode* node = NULL; Ref o = 0; Ref datatype = 0; Ref lang = 0; uint32_t flags = 0; const uint8_t c = peek_byte(reader); if (!fancy_syntax(reader)) { switch (c) { case '"': case ':': case '<': case '_': break; default: return r_err(reader, SERD_ERR_BAD_SYNTAX, "expected: ':', '<', or '_'\n"); } } switch (c) { case '\0': return r_err(reader, SERD_ERR_BAD_SYNTAX, "end of file in object\n"); case ')': return false; case '[': simple = false; TRY_THROW(ret = read_anon(reader, *ctx, false, &o)); break; case '(': simple = false; TRY_THROW(ret = read_collection(reader, *ctx, &o)); break; case '_': TRY_THROW(ret = (o = read_BLANK_NODE_LABEL(reader, ate_dot))); break; case '<': case ':': TRY_THROW(ret = read_iri(reader, &o, ate_dot)); break; case '+': case '-': case '.': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': TRY_THROW(ret = read_number(reader, &o, &datatype, ate_dot)); break; case '\"': case '\'': TRY_THROW(ret = read_literal(reader, &o, &datatype, &lang, &flags, ate_dot)); break; default: /* Either a boolean literal, or a qname. Read the prefix first, and if it is in fact a "true" or "false" literal, produce that instead. */ node = deref(reader, o = push_node(reader, SERD_CURIE, "", 0)); while (!read_PN_CHARS_BASE(reader, o)) {} if ((node->n_bytes == 4 && !memcmp(node->buf, "true", 4)) || (node->n_bytes == 5 && !memcmp(node->buf, "false", 5))) { node->type = SERD_LITERAL; datatype = push_node( reader, SERD_URI, XSD_BOOLEAN, XSD_BOOLEAN_LEN); ret = true; } else if (read_PN_PREFIX_tail(reader, o) > SERD_FAILURE) { ret = false; } else { if (!(ret = read_PrefixedName(reader, o, false, ate_dot))) { r_err(reader, SERD_ERR_BAD_SYNTAX, "expected prefixed name\n"); } } } if (simple && o) { deref(reader, o)->flags = flags; } if (ret && emit && simple) { ret = emit_statement(reader, *ctx, o, datatype, lang); } else if (ret && !emit) { ctx->object = o; ctx->datatype = datatype; ctx->lang = lang; return true; } except: pop_node(reader, lang); pop_node(reader, datatype); pop_node(reader, o); #ifndef NDEBUG assert(reader->stack.size == orig_stack_size); #endif return ret; } static bool read_objectList(SerdReader* reader, ReadContext ctx, bool* ate_dot) { TRY_RET(read_object(reader, &ctx, true, ate_dot)); if (!fancy_syntax(reader) && peek_delim(reader, ',')) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "syntax does not support abbreviation\n"); } while (!*ate_dot && eat_delim(reader, ',')) { TRY_RET(read_object(reader, &ctx, true, ate_dot)); } return true; } static bool read_predicateObjectList(SerdReader* reader, ReadContext ctx, bool* ate_dot) { while (read_verb(reader, &ctx.predicate) && read_ws_star(reader) && read_objectList(reader, ctx, ate_dot)) { ctx.predicate = pop_node(reader, ctx.predicate); if (*ate_dot) { return true; } bool ate_semi = false; uint8_t c; do { read_ws_star(reader); switch (c = peek_byte(reader)) { case 0: return r_err(reader, SERD_ERR_BAD_SYNTAX, "unexpected end of file\n"); case '.': case ']': case '}': return true; case ';': eat_byte_safe(reader, c); ate_semi = true; } } while (c == ';'); if (!ate_semi) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "missing ';' or '.'\n"); } } return pop_node(reader, ctx.predicate); } static bool end_collection(SerdReader* reader, ReadContext ctx, Ref n1, Ref n2, bool ret) { pop_node(reader, n2); pop_node(reader, n1); *ctx.flags &= ~SERD_LIST_CONT; return ret && (eat_byte_safe(reader, ')') == ')'); } static bool read_collection(SerdReader* reader, ReadContext ctx, Ref* dest) { eat_byte_safe(reader, '('); bool end = peek_delim(reader, ')'); *dest = end ? reader->rdf_nil : blank_id(reader); if (ctx.subject) { // subject predicate _:head *ctx.flags |= (end ? 0 : SERD_LIST_O_BEGIN); TRY_RET(emit_statement(reader, ctx, *dest, 0, 0)); *ctx.flags |= SERD_LIST_CONT; } else { *ctx.flags |= (end ? 0 : SERD_LIST_S_BEGIN); } if (end) { return end_collection(reader, ctx, 0, 0, true); } /* The order of node allocation here is necessarily not in stack order, so we create two nodes and recycle them throughout. */ Ref n1 = push_node_padded(reader, genid_size(reader), SERD_BLANK, "", 0); Ref n2 = 0; Ref node = n1; Ref rest = 0; ctx.subject = *dest; while (!(end = peek_delim(reader, ')'))) { // _:node rdf:first object ctx.predicate = reader->rdf_first; bool ate_dot = false; if (!read_object(reader, &ctx, true, &ate_dot) || ate_dot) { return end_collection(reader, ctx, n1, n2, false); } if (!(end = peek_delim(reader, ')'))) { /* Give rest a new ID. Done as late as possible to ensure it is used and > IDs generated by read_object above. */ if (!rest) { rest = n2 = blank_id(reader); // First pass, push } else { set_blank_id(reader, rest, genid_size(reader)); } } // _:node rdf:rest _:rest *ctx.flags |= SERD_LIST_CONT; ctx.predicate = reader->rdf_rest; TRY_RET(emit_statement(reader, ctx, (end ? reader->rdf_nil : rest), 0, 0)); ctx.subject = rest; // _:node = _:rest rest = node; // _:rest = (old)_:node node = ctx.subject; // invariant } return end_collection(reader, ctx, n1, n2, true); } static Ref read_subject(SerdReader* reader, ReadContext ctx, Ref* dest, char* s_type) { bool ate_dot = false; switch ((*s_type = peek_byte(reader))) { case '[': read_anon(reader, ctx, true, dest); break; case '(': read_collection(reader, ctx, dest); break; case '_': *dest = read_BLANK_NODE_LABEL(reader, &ate_dot); break; default: TRY_RET(read_iri(reader, dest, &ate_dot)); } return ate_dot ? pop_node(reader, *dest) : *dest; } static Ref read_labelOrSubject(SerdReader* reader, ReadContext ctx) { Ref subject = 0; bool ate_dot = false; switch (peek_byte(reader)) { case '[': eat_byte_safe(reader, '['); read_ws_star(reader); TRY_RET(eat_byte_check(reader, ']')); return blank_id(reader); case '_': return read_BLANK_NODE_LABEL(reader, &ate_dot); default: read_iri(reader, &subject, &ate_dot); } return subject; } static bool read_triples(SerdReader* reader, ReadContext ctx, bool* ate_dot) { bool ret = false; if (ctx.subject) { read_ws_star(reader); switch (peek_byte(reader)) { case '.': *ate_dot = eat_byte_safe(reader, '.'); return r_err(reader, SERD_ERR_BAD_SYNTAX, "syntax error\n"); case '}': return false; } ret = read_predicateObjectList(reader, ctx, ate_dot); } ctx.subject = ctx.predicate = 0; return ret; } static bool read_base(SerdReader* reader, bool sparql, bool token) { if (token) { TRY_RET(eat_string(reader, "base", 4)); } Ref uri; read_ws_star(reader); TRY_RET(uri = read_IRIREF(reader)); if (reader->base_sink) { reader->base_sink(reader->handle, deref(reader, uri)); } pop_node(reader, uri); read_ws_star(reader); if (!sparql) { return eat_byte_check(reader, '.'); } else if (peek_byte(reader) == '.') { return r_err(reader, SERD_ERR_BAD_SYNTAX, "full stop after SPARQL BASE\n"); } return true; } static bool read_prefixID(SerdReader* reader, bool sparql, bool token) { if (token) { TRY_RET(eat_string(reader, "prefix", 6)); } read_ws_star(reader); bool ret = true; Ref name = push_node(reader, SERD_LITERAL, "", 0); if (read_PN_PREFIX(reader, name) > SERD_FAILURE) { return pop_node(reader, name); } if (eat_byte_check(reader, ':') != ':') { return pop_node(reader, name); } read_ws_star(reader); const Ref uri = read_IRIREF(reader); if (!uri) { pop_node(reader, name); return false; } if (reader->prefix_sink) { ret = !reader->prefix_sink(reader->handle, deref(reader, name), deref(reader, uri)); } pop_node(reader, uri); pop_node(reader, name); if (!sparql) { read_ws_star(reader); return eat_byte_check(reader, '.'); } return ret; } static bool read_directive(SerdReader* reader) { const bool sparql = peek_byte(reader) != '@'; if (!sparql) { eat_byte_safe(reader, '@'); switch (peek_byte(reader)) { case 'B': case 'P': return r_err(reader, SERD_ERR_BAD_SYNTAX, "uppercase directive\n"); } } switch (peek_byte(reader)) { case 'B': case 'b': return read_base(reader, sparql, true); case 'P': case 'p': return read_prefixID(reader, sparql, true); default: return r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid directive\n"); } return true; } static bool read_wrappedGraph(SerdReader* reader, ReadContext* ctx) { bool ate_dot = false; char s_type = 0; TRY_RET(eat_byte_check(reader, '{')); read_ws_star(reader); while (peek_byte(reader) != '}') { ctx->subject = 0; Ref subj = read_subject(reader, *ctx, &ctx->subject, &s_type); if (!subj && ctx->subject) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "bad subject\n"); } else if (!subj) { return false; } else if (!read_triples(reader, *ctx, &ate_dot) && s_type != '[') { return r_err(reader, SERD_ERR_BAD_SYNTAX, "missing predicate object list\n"); } pop_node(reader, subj); read_ws_star(reader); if (peek_byte(reader) == '.') { eat_byte_safe(reader, '.'); } read_ws_star(reader); } return eat_byte_check(reader, '}'); } static int tokcmp(SerdReader* reader, Ref ref, const char* tok, size_t n) { SerdNode* node = deref(reader, ref); if (!node || node->n_bytes != n) { return -1; } const char* s1 = (const char*)node->buf; const char* s2 = tok; for (; n > 0 && *s2; s1++, s2++, --n) { if (toupper(*s1) != toupper(*s2)) { return ((*(uint8_t*)s1 < *(uint8_t*)s2) ? -1 : +1); } } return 0; } static bool read_statement(SerdReader* reader) { SerdStatementFlags flags = 0; ReadContext ctx = { 0, 0, 0, 0, 0, 0, &flags }; Ref subj = 0; bool ate_dot = false; char s_type = 0; bool ret = true; read_ws_star(reader); switch (peek_byte(reader)) { case '\0': reader->eof = true; return reader->status <= SERD_FAILURE; case '@': if (!fancy_syntax(reader)) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "syntax does not support directives\n"); } TRY_RET(read_directive(reader)); read_ws_star(reader); break; case '{': if (reader->syntax == SERD_TRIG) { TRY_RET(read_wrappedGraph(reader, &ctx)); read_ws_star(reader); } else { return r_err(reader, SERD_ERR_BAD_SYNTAX, "syntax does not support graphs\n"); } break; default: subj = read_subject(reader, ctx, &ctx.subject, &s_type); if (!tokcmp(reader, ctx.subject, "base", 4)) { ret = read_base(reader, true, false); } else if (!tokcmp(reader, ctx.subject, "prefix", 6)) { ret = read_prefixID(reader, true, false); } else if (!tokcmp(reader, ctx.subject, "graph", 5)) { read_ws_star(reader); TRY_RET((ctx.graph = read_labelOrSubject(reader, ctx))); read_ws_star(reader); TRY_RET(read_wrappedGraph(reader, &ctx)); read_ws_star(reader); } else if (read_ws_star(reader) && peek_byte(reader) == '{') { if (s_type == '(' || (s_type == '[' && !*ctx.flags)) { return r_err(reader, SERD_ERR_BAD_SYNTAX, "invalid graph name\n"); } ctx.graph = subj; ctx.subject = subj = 0; TRY_RET(read_wrappedGraph(reader, &ctx)); read_ws_star(reader); } else if (!subj) { ret = r_err(reader, SERD_ERR_BAD_SYNTAX, "bad subject\n"); } else if (!read_triples(reader, ctx, &ate_dot)) { ret = (s_type == '['); } else if (!ate_dot) { read_ws_star(reader); ret = (eat_byte_check(reader, '.') == '.'); } pop_node(reader, subj); break; } return ret; } static void skip_until(SerdReader* reader, uint8_t byte) { for (uint8_t c = 0; (c = peek_byte(reader)) && c != byte;) { eat_byte_safe(reader, c); } } static bool read_turtleTrigDoc(SerdReader* reader) { while (!reader->eof) { if (!read_statement(reader)) { if (reader->strict) { return 0; } skip_until(reader, '\n'); reader->status = SERD_ERR_BAD_SYNTAX; } } return reader->status <= SERD_FAILURE; } static bool read_nquadsDoc(SerdReader* reader) { while (!reader->eof) { SerdStatementFlags flags = 0; ReadContext ctx = { 0, 0, 0, 0, 0, 0, &flags }; bool ate_dot = false; char s_type = false; read_ws_star(reader); if (peek_byte(reader) == '\0') { reader->eof = true; break; } else if (peek_byte(reader) == '@') { return r_err(reader, SERD_ERR_BAD_SYNTAX, "syntax does not support directives\n"); } // subject predicate object if (!(ctx.subject = read_subject(reader, ctx, &ctx.subject, &s_type)) || !read_ws_star(reader) || !(ctx.predicate = read_IRIREF(reader)) || !read_ws_star(reader) || !read_object(reader, &ctx, false, &ate_dot)) { return false; } if (!ate_dot) { // graphLabel? TRY_RET(read_ws_star(reader)); switch (peek_byte(reader)) { case '.': break; case '_': ctx.graph = read_BLANK_NODE_LABEL(reader, &ate_dot); break; default: if (!(ctx.graph = read_IRIREF(reader))) { return false; } } // Terminating '.' TRY_RET(read_ws_star(reader)); eat_byte_check(reader, '.'); } TRY_RET(emit_statement(reader, ctx, ctx.object, ctx.datatype, ctx.lang)); pop_node(reader, ctx.graph); pop_node(reader, ctx.lang); pop_node(reader, ctx.datatype); pop_node(reader, ctx.object); } return reader->status <= SERD_FAILURE; } static bool read_doc(SerdReader* reader) { switch (reader->syntax) { case SERD_NQUADS: return read_nquadsDoc(reader); default: return read_turtleTrigDoc(reader); } } SERD_API SerdReader* serd_reader_new(SerdSyntax syntax, void* handle, void (*free_handle)(void*), SerdBaseSink base_sink, SerdPrefixSink prefix_sink, SerdStatementSink statement_sink, SerdEndSink end_sink) { const Cursor cur = { NULL, 0, 0 }; SerdReader* me = (SerdReader*)calloc(1, sizeof(SerdReader)); me->handle = handle; me->free_handle = free_handle; me->base_sink = base_sink; me->prefix_sink = prefix_sink; me->statement_sink = statement_sink; me->end_sink = end_sink; me->default_graph = SERD_NODE_NULL; me->stack = serd_stack_new(SERD_PAGE_SIZE); me->syntax = syntax; me->cur = cur; me->next_id = 1; me->rdf_first = push_node(me, SERD_URI, NS_RDF "first", 48); me->rdf_rest = push_node(me, SERD_URI, NS_RDF "rest", 47); me->rdf_nil = push_node(me, SERD_URI, NS_RDF "nil", 46); return me; } SERD_API void serd_reader_set_strict(SerdReader* reader, bool strict) { reader->strict = strict; } SERD_API void serd_reader_set_error_sink(SerdReader* reader, SerdErrorSink error_sink, void* error_handle) { reader->error_sink = error_sink; reader->error_handle = error_handle; } SERD_API void serd_reader_free(SerdReader* reader) { pop_node(reader, reader->rdf_nil); pop_node(reader, reader->rdf_rest); pop_node(reader, reader->rdf_first); serd_node_free(&reader->default_graph); #ifdef SERD_STACK_CHECK free(reader->allocs); #endif free(reader->stack.buf); free(reader->bprefix); if (reader->free_handle) { reader->free_handle(reader->handle); } free(reader); } SERD_API void* serd_reader_get_handle(const SerdReader* reader) { return reader->handle; } SERD_API void serd_reader_add_blank_prefix(SerdReader* reader, const uint8_t* prefix) { free(reader->bprefix); reader->bprefix_len = 0; reader->bprefix = NULL; if (prefix) { reader->bprefix_len = strlen((const char*)prefix); reader->bprefix = (uint8_t*)malloc(reader->bprefix_len + 1); memcpy(reader->bprefix, prefix, reader->bprefix_len + 1); } } SERD_API void serd_reader_set_default_graph(SerdReader* reader, const SerdNode* graph) { serd_node_free(&reader->default_graph); reader->default_graph = serd_node_copy(graph); } SERD_API SerdStatus serd_reader_read_file(SerdReader* reader, const uint8_t* uri) { uint8_t* const path = serd_file_uri_parse(uri, NULL); if (!path) { return SERD_ERR_BAD_ARG; } FILE* fd = serd_fopen((const char*)path, "r"); if (!fd) { free(path); return SERD_ERR_UNKNOWN; } SerdStatus ret = serd_reader_read_file_handle(reader, fd, path); fclose(fd); free(path); return ret; } static SerdStatus skip_bom(SerdReader* me) { if (peek_byte(me) == 0xEF) { eat_byte_safe(me, 0xEF); if (eat_byte_check(me, 0xBB) != 0xBB || eat_byte_check(me, 0xBF) != 0xBF) { r_err(me, SERD_ERR_BAD_SYNTAX, "corrupt byte order mark\n"); return SERD_ERR_BAD_SYNTAX; } } return SERD_SUCCESS; } SERD_API SerdStatus serd_reader_start_stream(SerdReader* reader, FILE* file, const uint8_t* name, bool bulk) { return serd_reader_start_source_stream( reader, bulk ? (SerdSource)fread : serd_file_read_byte, (SerdStreamErrorFunc)ferror, file, name, bulk ? SERD_PAGE_SIZE : 1); } SERD_API SerdStatus serd_reader_start_source_stream(SerdReader* reader, SerdSource read_func, SerdStreamErrorFunc error_func, void* stream, const uint8_t* name, size_t page_size) { const Cursor cur = { name, 1, 1 }; reader->cur = cur; return serd_byte_source_open_source( &reader->source, read_func, error_func, stream, page_size); } static SerdStatus serd_reader_prepare(SerdReader* reader) { reader->eof = false; reader->status = serd_byte_source_prepare(&reader->source); if (reader->status == SERD_SUCCESS) { reader->status = skip_bom(reader); } else if (reader->status == SERD_FAILURE) { reader->eof = true; } else { r_err(reader, reader->status, "read error: %s\n", strerror(errno)); } return reader->status; } SERD_API SerdStatus serd_reader_read_chunk(SerdReader* reader) { SerdStatus st = SERD_SUCCESS; if (!reader->source.prepared) { if ((st = serd_reader_prepare(reader))) { return st; } } else if (reader->eof) { reader->eof = false; if ((st = serd_byte_source_advance(&reader->source))) { return st; } } return read_statement(reader) ? SERD_SUCCESS : SERD_FAILURE; } SERD_API SerdStatus serd_reader_end_stream(SerdReader* reader) { return serd_byte_source_close(&reader->source); } SERD_API SerdStatus serd_reader_read_file_handle(SerdReader* reader, FILE* file, const uint8_t* name) { return serd_reader_read_source( reader, (SerdSource)fread, (SerdStreamErrorFunc)ferror, file, name, SERD_PAGE_SIZE); } SERD_API SerdStatus serd_reader_read_source(SerdReader* reader, SerdSource source, SerdStreamErrorFunc error, void* stream, const uint8_t* name, size_t page_size) { SerdStatus st = serd_reader_start_source_stream( reader, source, error, stream, name, page_size); if (st || (st = serd_reader_prepare(reader))) { serd_reader_end_stream(reader); return st; } else if (!read_doc(reader)) { serd_reader_end_stream(reader); return SERD_ERR_UNKNOWN; } return serd_reader_end_stream(reader); } SERD_API SerdStatus serd_reader_read_string(SerdReader* reader, const uint8_t* utf8) { const Cursor cur = { (const uint8_t*)"(string)", 1, 1 }; serd_byte_source_open_string(&reader->source, utf8); reader->cur = cur; reader->eof = false; SerdStatus st = serd_reader_prepare(reader); if (!st) { st = read_doc(reader) ? SERD_SUCCESS : SERD_ERR_UNKNOWN; } serd_byte_source_close(&reader->source); return st; }