/* Copyright 2011 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define _XOPEN_SOURCE 500 #include #include #include #include "sord/sord.h" static const int DIGITS = 3; static const int MAX_NUM = 999; typedef struct { SordQuad query; int expected_num_results; } QueryTest; #define USTR(s) ((const uint8_t*)(s)) static SordNode* uri(SordWorld* world, int num) { if (num == 0) return 0; char uri[] = "eg:000"; char* uri_num = uri + 3; // First `0' snprintf(uri_num, DIGITS + 1, "%0*d", DIGITS, num); return sord_new_uri(world, (const uint8_t*)uri); } /** Trivial function to return EXIT_FAILURE (useful as a breakpoint) */ int test_fail() { return EXIT_FAILURE; } int generate(SordWorld* world, SordModel* sord, size_t n_quads, size_t n_objects_per) { fprintf(stderr, "Generating %zu (S P *) quads with %zu objects each\n", n_quads, n_objects_per); for (size_t i = 0; i < n_quads; ++i) { int num = (i * n_objects_per) + 1; SordNode* ids[2 + n_objects_per]; for (size_t j = 0; j < 2 + n_objects_per; ++j) { ids[j] = uri(world, num++); } for (size_t j = 0; j < n_objects_per; ++j) { SordQuad tup = { ids[0], ids[1], ids[2 + j] }; if (!sord_add(sord, tup)) { fprintf(stderr, "Fail: Failed to add quad\n"); return test_fail(); } } for (size_t j = 0; j < 2 + n_objects_per; ++j) { sord_node_free(world, ids[j]); } } // Add some literals SordQuad tup = { 0, 0, 0, 0}; tup[0] = uri(world, 98); tup[1] = uri(world, 4); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = 0; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, 0, USTR("hi"), NULL); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[0]); sord_node_free(world, (SordNode*)tup[2]); tup[0] = uri(world, 14); tup[2] = sord_new_literal(world, 0, USTR("bonjour"), "fr"); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, 0, USTR("salut"), "fr"); sord_add(sord, tup); // Attempt to add some duplicates if (sord_add(sord, tup)) { fprintf(stderr, "Fail: Successfully added duplicate quad\n"); return test_fail(); } if (sord_add(sord, tup)) { fprintf(stderr, "Fail: Successfully added duplicate quad\n"); return test_fail(); } // Add a blank node subject sord_node_free(world, (SordNode*)tup[0]); tup[0] = sord_new_blank(world, USTR("ablank")); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[1]); sord_node_free(world, (SordNode*)tup[2]); tup[1] = uri(world, 6); tup[2] = uri(world, 7); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[0]); sord_node_free(world, (SordNode*)tup[1]); sord_node_free(world, (SordNode*)tup[2]); return EXIT_SUCCESS; } #define TUP_FMT "(%6s %6s %6s)" #define TUP_FMT_ARGS(t) \ ((t)[0] ? sord_node_get_string((t)[0]) : USTR("*")), \ ((t)[1] ? sord_node_get_string((t)[1]) : USTR("*")), \ ((t)[2] ? sord_node_get_string((t)[2]) : USTR("*")) int test_read(SordWorld* world, SordModel* sord, const size_t n_quads, const int n_objects_per) { int ret = EXIT_SUCCESS; SordQuad id; SordIter* iter = sord_begin(sord); if (sord_iter_get_model(iter) != sord) { fprintf(stderr, "Fail: Iterator has incorrect sord pointer\n"); return test_fail(); } for (; !sord_iter_end(iter); sord_iter_next(iter)) sord_iter_get(iter, id); // Attempt to increment past end if (!sord_iter_next(iter)) { fprintf(stderr, "Fail: Successfully incremented past end\n"); return test_fail(); } sord_iter_free(iter); #define NUM_PATTERNS 9 QueryTest patterns[NUM_PATTERNS] = { { { 0, 0, 0 }, (n_quads * n_objects_per) + 6 }, { { uri(world, 9), uri(world, 9), uri(world, 9) }, 0 }, { { uri(world, 1), uri(world, 2), uri(world, 4) }, 1 }, { { uri(world, 3), uri(world, 4), uri(world, 0) }, 2 }, { { uri(world, 0), uri(world, 2), uri(world, 4) }, 1 }, { { uri(world, 0), uri(world, 0), uri(world, 4) }, 1 }, { { uri(world, 1), uri(world, 0), uri(world, 0) }, 2 }, { { uri(world, 1), uri(world, 0), uri(world, 4) }, 1 }, { { uri(world, 0), uri(world, 2), uri(world, 0) }, 2 } }; for (unsigned i = 0; i < NUM_PATTERNS; ++i) { QueryTest test = patterns[i]; SordQuad pat = { test.query[0], test.query[1], test.query[2], 0 }; fprintf(stderr, "Query " TUP_FMT "... ", TUP_FMT_ARGS(pat)); iter = sord_find(sord, pat); int num_results = 0; for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); ++num_results; if (!sord_quad_match(pat, id)) { sord_iter_free(iter); fprintf(stderr, "Fail: Query result " TUP_FMT " does not match pattern\n", TUP_FMT_ARGS(id)); return test_fail(); } } sord_iter_free(iter); if (num_results != test.expected_num_results) { fprintf(stderr, "Fail: Expected %d results, got %d\n", test.expected_num_results, num_results); return test_fail(); } fprintf(stderr, "OK (%u matches)\n", test.expected_num_results); } // Query blank node subject SordQuad pat = { sord_new_blank(world, USTR("ablank")), 0, 0 }; if (!pat[0]) { fprintf(stderr, "Blank node subject lost\n"); return test_fail(); } fprintf(stderr, "Query " TUP_FMT "... ", TUP_FMT_ARGS(pat)); iter = sord_find(sord, pat); int num_results = 0; for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); ++num_results; if (!sord_quad_match(pat, id)) { sord_iter_free(iter); fprintf(stderr, "Fail: Query result " TUP_FMT " does not match pattern\n", TUP_FMT_ARGS(id)); return test_fail(); } } fprintf(stderr, "OK\n"); sord_node_free(world, (SordNode*)pat[0]); sord_iter_free(iter); if (num_results != 2) { fprintf(stderr, "Blank node subject query failed\n"); return test_fail(); } // Test nested queries fprintf(stderr, "Nested Queries... "); pat[0] = pat[1] = pat[2] = 0; const SordNode* last_subject = 0; iter = sord_find(sord, pat); for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); if (id[0] == last_subject) continue; SordQuad subpat = { id[0], 0, 0 }; SordIter* subiter = sord_find(sord, subpat); int num_sub_results = 0; for (; !sord_iter_end(subiter); sord_iter_next(subiter)) { SordQuad subid; sord_iter_get(subiter, subid); if (!sord_quad_match(subpat, subid)) { sord_iter_free(iter); sord_iter_free(subiter); fprintf(stderr, "Fail: Nested query result does not match pattern\n"); return test_fail(); } ++num_sub_results; } sord_iter_free(subiter); if (num_sub_results != n_objects_per) { fprintf(stderr, "Fail: Nested query failed (got %d results, expected %d)\n", num_sub_results, n_objects_per); return test_fail(); } last_subject = id[0]; } fprintf(stderr, "OK\n\n"); sord_iter_free(iter); return ret; } int main(int argc, char** argv) { static const size_t n_quads = 300; static const int n_objects_per = 2; sord_free(NULL); // Shouldn't crash SordWorld* world = sord_world_new(); // Create with minimal indexing SordModel* sord = sord_new(world, SORD_SPO, false); generate(world, sord, n_quads, n_objects_per); if (test_read(world, sord, n_quads, n_objects_per)) { sord_free(sord); sord_world_free(world); return EXIT_FAILURE; } // Check interning merges equivalent values SordNode* uri_id = sord_new_uri(world, USTR("http://example.org")); SordNode* blank_id = sord_new_uri(world, USTR("testblank")); SordNode* lit_id = sord_new_literal(world, uri_id, USTR("hello"), NULL); //sord_clear_cache(write); SordNode* uri_id2 = sord_new_uri(world, USTR("http://example.org")); SordNode* blank_id2 = sord_new_uri(world, USTR("testblank")); SordNode* lit_id2 = sord_new_literal(world, uri_id, USTR("hello"), NULL); if (uri_id2 != uri_id) { fprintf(stderr, "Fail: URI interning failed (duplicates)\n"); goto fail; } else if (blank_id2 != blank_id) { fprintf(stderr, "Fail: Blank node interning failed (duplicates)\n"); goto fail; } else if (lit_id2 != lit_id) { fprintf(stderr, "Fail: Literal interning failed (duplicates)\n"); goto fail; } // Check interning doesn't clash non-equivalent values SordNode* uri_id3 = sord_new_uri(world, USTR("http://example.orgX")); SordNode* blank_id3 = sord_new_uri(world, USTR("testblankX")); SordNode* lit_id3 = sord_new_literal(world, uri_id, USTR("helloX"), NULL); if (uri_id3 == uri_id) { fprintf(stderr, "Fail: URI interning failed (clash)\n"); goto fail; } else if (blank_id3 == blank_id) { fprintf(stderr, "Fail: Blank node interning failed (clash)\n"); goto fail; } else if (lit_id3 == lit_id) { fprintf(stderr, "Fail: Literal interning failed (clash)\n"); goto fail; } sord_node_free(world, uri_id); sord_node_free(world, blank_id); sord_node_free(world, lit_id); sord_node_free(world, uri_id2); sord_node_free(world, blank_id2); sord_node_free(world, lit_id2); sord_node_free(world, uri_id3); sord_node_free(world, blank_id3); sord_node_free(world, lit_id3); sord_free(sord); static const char* const index_names[6] = { "spo", "sop", "ops", "osp", "pso", "pos" }; for (int i = 0; i < 6; ++i) { sord = sord_new(world, (1 << i), false); printf("Testing Index `%s'\n", index_names[i]); generate(world, sord, n_quads, n_objects_per); if (test_read(world, sord, n_quads, n_objects_per)) goto fail; sord_free(sord); } sord_world_free(world); return EXIT_SUCCESS; fail: sord_free(sord); sord_world_free(world); return EXIT_FAILURE; }