// Copyright 2011-2016 David Robillard // SPDX-License-Identifier: ISC #include "serd/serd.h" #include "sord/sord.h" #include #include #include #include #include #include #ifdef __GNUC__ # define SORD_LOG_FUNC(fmt, arg1) __attribute__((format(printf, fmt, arg1))) #else # define SORD_LOG_FUNC(fmt, arg1) #endif #define DIGITS 3 #define N_OBJECTS_PER 2U static int n_expected_errors = 0; typedef struct { SordQuad query; int expected_num_results; } QueryTest; #define USTR(s) ((const uint8_t*)(s)) static SordNode* uri(SordWorld* world, unsigned num) { if (num == 0) { return 0; } char str[16]; snprintf(str, sizeof(str), "eg:%0*u", DIGITS, num); return sord_new_uri(world, (const uint8_t*)str); } SORD_LOG_FUNC(1, 2) static int test_fail(const char* fmt, ...) { va_list args; va_start(args, fmt); fprintf(stderr, "error: "); vfprintf(stderr, fmt, args); va_end(args); return 1; } static int generate(SordWorld* world, SordModel* sord, unsigned n_quads, SordNode* graph) { fprintf(stderr, "Generating %u (S P *) quads with %u objects each\n", n_quads, N_OBJECTS_PER); for (unsigned i = 0; i < n_quads; ++i) { unsigned num = (i * N_OBJECTS_PER) + 1; SordNode* ids[2 + N_OBJECTS_PER]; for (unsigned j = 0; j < 2 + N_OBJECTS_PER; ++j) { ids[j] = uri(world, num++); } for (unsigned j = 0; j < N_OBJECTS_PER; ++j) { SordQuad tup = {ids[0], ids[1], ids[2 + j], graph}; if (!sord_add(sord, tup)) { return test_fail("Fail: Failed to add quad\n"); } } for (unsigned j = 0; j < 2 + N_OBJECTS_PER; ++j) { sord_node_free(world, ids[j]); } } // Add some literals // (98 4 "hello") and (98 4 "hello"^^<5>) SordQuad tup = {0, 0, 0, 0}; tup[0] = uri(world, 98); tup[1] = uri(world, 4); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = graph; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, uri(world, 5), USTR("hello"), NULL); if (!sord_add(sord, tup)) { return test_fail("Failed to add typed literal\n"); } // (96 4 "hello"^^<4>) and (96 4 "hello"^^<5>) tup[0] = uri(world, 96); tup[1] = uri(world, 4); tup[2] = sord_new_literal(world, uri(world, 4), USTR("hello"), NULL); tup[3] = graph; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, uri(world, 5), USTR("hello"), NULL); if (!sord_add(sord, tup)) { return test_fail("Failed to add typed literal\n"); } // (94 5 "hello") and (94 5 "hello"@en-gb) tup[0] = uri(world, 94); tup[1] = uri(world, 5); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = graph; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, NULL, USTR("hello"), "en-gb"); if (!sord_add(sord, tup)) { return test_fail("Failed to add literal with language\n"); } // (92 6 "hello"@en-us) and (92 5 "hello"@en-gb) tup[0] = uri(world, 92); tup[1] = uri(world, 6); tup[2] = sord_new_literal(world, 0, USTR("hello"), "en-us"); tup[3] = graph; sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, NULL, USTR("hello"), "en-gb"); if (!sord_add(sord, tup)) { return test_fail("Failed to add literal with language\n"); } sord_node_free(world, (SordNode*)tup[0]); sord_node_free(world, (SordNode*)tup[2]); tup[0] = uri(world, 14); tup[2] = sord_new_literal(world, 0, USTR("bonjour"), "fr"); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, 0, USTR("salut"), "fr"); sord_add(sord, tup); // Attempt to add some duplicates if (sord_add(sord, tup)) { return test_fail("Fail: Successfully added duplicate quad\n"); } if (sord_add(sord, tup)) { return test_fail("Fail: Successfully added duplicate quad\n"); } // Add a blank node subject sord_node_free(world, (SordNode*)tup[0]); tup[0] = sord_new_blank(world, USTR("ablank")); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[1]); sord_node_free(world, (SordNode*)tup[2]); tup[1] = uri(world, 6); tup[2] = uri(world, 7); sord_add(sord, tup); sord_node_free(world, (SordNode*)tup[0]); sord_node_free(world, (SordNode*)tup[1]); sord_node_free(world, (SordNode*)tup[2]); return EXIT_SUCCESS; } #define TUP_FMT "(%6s %6s %6s)" #define TUP_FMT_ARGS(t) \ ((t)[0] ? sord_node_get_string((t)[0]) : USTR("*")), \ ((t)[1] ? sord_node_get_string((t)[1]) : USTR("*")), \ ((t)[2] ? sord_node_get_string((t)[2]) : USTR("*")) static int test_read(SordWorld* world, SordModel* sord, SordNode* g, const size_t n_quads) { int ret = EXIT_SUCCESS; SordQuad id; SordIter* iter = sord_begin(sord); if (sord_iter_get_model(iter) != sord) { return test_fail("Fail: Iterator has incorrect sord pointer\n"); } for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); } // Attempt to increment past end if (!sord_iter_next(iter)) { return test_fail("Fail: Successfully incremented past end\n"); } sord_iter_free(iter); const uint8_t* s = USTR("hello"); SordNode* plain_hello = sord_new_literal(world, 0, s, NULL); SordNode* type4_hello = sord_new_literal(world, uri(world, 4), s, NULL); SordNode* type5_hello = sord_new_literal(world, uri(world, 5), s, NULL); SordNode* gb_hello = sord_new_literal(world, NULL, s, "en-gb"); SordNode* us_hello = sord_new_literal(world, NULL, s, "en-us"); #define NUM_PATTERNS 18 QueryTest patterns[NUM_PATTERNS] = { {{0, 0, 0}, (int)(n_quads * N_OBJECTS_PER) + 12}, {{uri(world, 1), 0, 0}, 2}, {{uri(world, 9), uri(world, 9), uri(world, 9)}, 0}, {{uri(world, 1), uri(world, 2), uri(world, 4)}, 1}, {{uri(world, 3), uri(world, 4), uri(world, 0)}, 2}, {{uri(world, 0), uri(world, 2), uri(world, 4)}, 1}, {{uri(world, 0), uri(world, 0), uri(world, 4)}, 1}, {{uri(world, 1), uri(world, 0), uri(world, 0)}, 2}, {{uri(world, 1), uri(world, 0), uri(world, 4)}, 1}, {{uri(world, 0), uri(world, 2), uri(world, 0)}, 2}, {{uri(world, 98), uri(world, 4), plain_hello}, 1}, {{uri(world, 98), uri(world, 4), type5_hello}, 1}, {{uri(world, 96), uri(world, 4), type4_hello}, 1}, {{uri(world, 96), uri(world, 4), type5_hello}, 1}, {{uri(world, 94), uri(world, 5), plain_hello}, 1}, {{uri(world, 94), uri(world, 5), gb_hello}, 1}, {{uri(world, 92), uri(world, 6), gb_hello}, 1}, {{uri(world, 92), uri(world, 6), us_hello}, 1}}; SordQuad match = {uri(world, 1), uri(world, 2), uri(world, 4), g}; if (!sord_contains(sord, match)) { return test_fail("Fail: No match for " TUP_FMT "\n", TUP_FMT_ARGS(match)); } SordQuad nomatch = {uri(world, 1), uri(world, 2), uri(world, 9), g}; if (sord_contains(sord, nomatch)) { return test_fail("Fail: False match for " TUP_FMT "\n", TUP_FMT_ARGS(nomatch)); } if (sord_get(sord, NULL, NULL, uri(world, 3), g)) { return test_fail("Fail: Get *,*,3 succeeded\n"); } else if (!sord_node_equals( sord_get(sord, uri(world, 1), uri(world, 2), NULL, g), uri(world, 3))) { return test_fail("Fail: Get 1,2,* != 3\n"); } else if (!sord_node_equals( sord_get(sord, uri(world, 1), NULL, uri(world, 3), g), uri(world, 2))) { return test_fail("Fail: Get 1,*,3 != 2\n"); } else if (!sord_node_equals( sord_get(sord, NULL, uri(world, 2), uri(world, 3), g), uri(world, 1))) { return test_fail("Fail: Get *,2,3 != 1\n"); } for (unsigned i = 0; i < NUM_PATTERNS; ++i) { QueryTest test = patterns[i]; SordQuad pat = {test.query[0], test.query[1], test.query[2], g}; fprintf(stderr, "Query " TUP_FMT "... ", TUP_FMT_ARGS(pat)); iter = sord_find(sord, pat); int num_results = 0; for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); ++num_results; if (!sord_quad_match(pat, id)) { sord_iter_free(iter); return test_fail("Fail: Query result " TUP_FMT " does not match pattern\n", TUP_FMT_ARGS(id)); } } sord_iter_free(iter); if (num_results != test.expected_num_results) { return test_fail("Fail: Expected %d results, got %d\n", test.expected_num_results, num_results); } fprintf(stderr, "OK (%i matches)\n", test.expected_num_results); } // Query blank node subject SordQuad pat = {sord_new_blank(world, USTR("ablank")), 0, 0}; if (!pat[0]) { return test_fail("Blank node subject lost\n"); } fprintf(stderr, "Query " TUP_FMT "... ", TUP_FMT_ARGS(pat)); iter = sord_find(sord, pat); int num_results = 0; for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); ++num_results; if (!sord_quad_match(pat, id)) { sord_iter_free(iter); return test_fail("Fail: Query result " TUP_FMT " does not match pattern\n", TUP_FMT_ARGS(id)); } } fprintf(stderr, "OK\n"); sord_node_free(world, (SordNode*)pat[0]); sord_iter_free(iter); if (num_results != 2) { return test_fail("Blank node subject query failed\n"); } // Test nested queries fprintf(stderr, "Nested Queries... "); const SordNode* last_subject = 0; iter = sord_search(sord, NULL, NULL, NULL, NULL); for (; !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, id); if (id[0] == last_subject) { continue; } SordQuad subpat = {id[0], 0, 0}; SordIter* subiter = sord_find(sord, subpat); unsigned num_sub_results = 0; if (sord_iter_get_node(subiter, SORD_SUBJECT) != id[0]) { return test_fail("Fail: Incorrect initial submatch\n"); } for (; !sord_iter_end(subiter); sord_iter_next(subiter)) { SordQuad subid; sord_iter_get(subiter, subid); if (!sord_quad_match(subpat, subid)) { sord_iter_free(iter); sord_iter_free(subiter); return test_fail("Fail: Nested query result does not match pattern\n"); } ++num_sub_results; } sord_iter_free(subiter); if (num_sub_results != N_OBJECTS_PER) { return test_fail("Fail: Nested query " TUP_FMT " failed" " (%u results, expected %u)\n", TUP_FMT_ARGS(subpat), num_sub_results, N_OBJECTS_PER); } uint64_t count = sord_count(sord, id[0], 0, 0, 0); if (count != num_sub_results) { return test_fail("Fail: Query " TUP_FMT " sord_count() %" PRIu64 "does not match result count %u\n", TUP_FMT_ARGS(subpat), count, num_sub_results); } last_subject = id[0]; } fprintf(stderr, "OK\n\n"); sord_iter_free(iter); return ret; } static SerdStatus unexpected_error(void* handle, const SerdError* error) { (void)handle; fprintf(stderr, "unexpected error: "); vfprintf(stderr, error->fmt, *error->args); return SERD_SUCCESS; } static SerdStatus expected_error(void* handle, const SerdError* error) { (void)handle; fprintf(stderr, "expected error: "); vfprintf(stderr, error->fmt, *error->args); ++n_expected_errors; return SERD_SUCCESS; } static int finished(SordWorld* world, SordModel* sord, int status) { sord_free(sord); sord_world_free(world); return status; } int main(void) { static const unsigned n_quads = 300U; sord_free(NULL); // Shouldn't crash SordWorld* world = sord_world_new(); // Attempt to create invalid URI fprintf(stderr, "expected "); SordNode* bad_uri = sord_new_uri(world, USTR("noscheme")); if (bad_uri) { return test_fail("Successfully created invalid URI \"noscheme\"\n"); } sord_node_free(world, bad_uri); sord_world_set_error_sink(world, expected_error, NULL); // Attempt to create invalid CURIE SerdNode base = serd_node_from_string(SERD_URI, USTR("http://example.org/")); SerdEnv* env = serd_env_new(&base); SerdNode sbad = serd_node_from_string(SERD_CURIE, USTR("bad:")); SordNode* bad = sord_node_from_serd_node(world, env, &sbad, NULL, NULL); if (bad) { return test_fail("Successfully created CURIE with bad namespace\n"); } sord_node_free(world, bad); serd_env_free(env); // Attempt to create node from garbage SerdNode junk = SERD_NODE_NULL; junk.type = (SerdType)1234; if (sord_node_from_serd_node(world, env, &junk, NULL, NULL)) { return test_fail("Successfully created node from garbage serd node\n"); } // Attempt to create NULL node SordNode* nil_node = sord_node_from_serd_node(world, NULL, &SERD_NODE_NULL, NULL, NULL); if (nil_node) { return test_fail("Successfully created NULL node\n"); } sord_node_free(world, nil_node); // Check node flags are set properly SordNode* with_newline = sord_new_literal(world, NULL, USTR("a\nb"), NULL); if (!(sord_node_get_flags(with_newline) & SERD_HAS_NEWLINE)) { return test_fail("Newline flag not set\n"); } SordNode* with_quote = sord_new_literal(world, NULL, USTR("a\"b"), NULL); if (!(sord_node_get_flags(with_quote) & SERD_HAS_QUOTE)) { return test_fail("Quote flag not set\n"); } // Create with minimal indexing SordModel* sord = sord_new(world, SORD_SPO, false); generate(world, sord, n_quads, NULL); if (test_read(world, sord, NULL, n_quads)) { sord_free(sord); sord_world_free(world); return EXIT_FAILURE; } // Check adding tuples with NULL fields fails sord_world_set_error_sink(world, expected_error, NULL); const size_t initial_num_quads = sord_num_quads(sord); SordQuad tup = {0, 0, 0, 0}; if (sord_add(sord, tup)) { return test_fail("Added NULL tuple\n"); } tup[0] = uri(world, 1); if (sord_add(sord, tup)) { return test_fail("Added tuple with NULL P and O\n"); } tup[1] = uri(world, 2); if (sord_add(sord, tup)) { return test_fail("Added tuple with NULL O\n"); } if (sord_num_quads(sord) != initial_num_quads) { return test_fail( "Num quads %zu != %zu\n", sord_num_quads(sord), initial_num_quads); } // Check adding tuples with an active iterator fails SordIter* iter = sord_begin(sord); tup[2] = uri(world, 3); if (sord_add(sord, tup)) { return test_fail("Added tuple with active iterator\n"); } // Check removing tuples with several active iterator fails SordIter* iter2 = sord_begin(sord); if (!sord_erase(sord, iter)) { return test_fail("Erased tuple with several active iterators\n"); } n_expected_errors = 0; sord_remove(sord, tup); if (n_expected_errors != 1) { return test_fail("Removed tuple with several active iterators\n"); } sord_iter_free(iter); sord_iter_free(iter2); sord_world_set_error_sink(world, unexpected_error, NULL); // Check interning merges equivalent values SordNode* uri_id = sord_new_uri(world, USTR("http://example.org")); SordNode* blank_id = sord_new_blank(world, USTR("testblank")); SordNode* lit_id = sord_new_literal(world, uri_id, USTR("hello"), NULL); if (sord_node_get_type(uri_id) != SORD_URI) { return test_fail("URI node has incorrect type\n"); } else if (sord_node_get_type(blank_id) != SORD_BLANK) { return test_fail("Blank node has incorrect type\n"); } else if (sord_node_get_type(lit_id) != SORD_LITERAL) { return test_fail("Literal node has incorrect type\n"); } const size_t initial_num_nodes = sord_num_nodes(world); SordNode* uri_id2 = sord_new_uri(world, USTR("http://example.org")); SordNode* blank_id2 = sord_new_blank(world, USTR("testblank")); SordNode* lit_id2 = sord_new_literal(world, uri_id, USTR("hello"), NULL); if (uri_id2 != uri_id || !sord_node_equals(uri_id2, uri_id)) { fprintf(stderr, "Fail: URI interning failed (duplicates)\n"); return finished(world, sord, EXIT_FAILURE); } else if (blank_id2 != blank_id || !sord_node_equals(blank_id2, blank_id)) { fprintf(stderr, "Fail: Blank node interning failed (duplicates)\n"); return finished(world, sord, EXIT_FAILURE); } else if (lit_id2 != lit_id || !sord_node_equals(lit_id2, lit_id)) { fprintf(stderr, "Fail: Literal interning failed (duplicates)\n"); return finished(world, sord, EXIT_FAILURE); } if (sord_num_nodes(world) != initial_num_nodes) { return test_fail( "Num nodes %zu != %zu\n", sord_num_nodes(world), initial_num_nodes); } const uint8_t ni_hao[] = {0xE4, 0xBD, 0xA0, 0xE5, 0xA5, 0xBD, 0}; SordNode* chello = sord_new_literal(world, NULL, ni_hao, "cmn"); // Test literal length size_t n_bytes; size_t n_chars; const uint8_t* str = sord_node_get_string_counted(lit_id2, &n_bytes); if (strcmp((const char*)str, "hello")) { return test_fail("Literal node corrupt\n"); } else if (n_bytes != strlen("hello")) { return test_fail("ASCII literal byte count incorrect\n"); } str = sord_node_get_string_measured(lit_id2, &n_bytes, &n_chars); if (n_bytes != strlen("hello") || n_chars != strlen("hello")) { return test_fail("ASCII literal measured length incorrect\n"); } else if (strcmp((const char*)str, "hello")) { return test_fail("ASCII literal string incorrect\n"); } str = sord_node_get_string_measured(chello, &n_bytes, &n_chars); if (n_bytes != 6) { return test_fail("Multi-byte literal byte count incorrect\n"); } else if (n_chars != 2) { return test_fail("Multi-byte literal character count incorrect\n"); } else if (strcmp((const char*)str, (const char*)ni_hao)) { return test_fail("Multi-byte literal string incorrect\n"); } // Check interning doesn't clash non-equivalent values SordNode* uri_id3 = sord_new_uri(world, USTR("http://example.orgX")); SordNode* blank_id3 = sord_new_blank(world, USTR("testblankX")); SordNode* lit_id3 = sord_new_literal(world, uri_id, USTR("helloX"), NULL); if (uri_id3 == uri_id || sord_node_equals(uri_id3, uri_id)) { fprintf(stderr, "Fail: URI interning failed (clash)\n"); return finished(world, sord, EXIT_FAILURE); } else if (blank_id3 == blank_id || sord_node_equals(blank_id3, blank_id)) { fprintf(stderr, "Fail: Blank node interning failed (clash)\n"); return finished(world, sord, EXIT_FAILURE); } else if (lit_id3 == lit_id || sord_node_equals(lit_id3, lit_id)) { fprintf(stderr, "Fail: Literal interning failed (clash)\n"); return finished(world, sord, EXIT_FAILURE); } // Check literal interning SordNode* lit4 = sord_new_literal(world, NULL, USTR("hello"), NULL); SordNode* lit5 = sord_new_literal(world, uri_id2, USTR("hello"), NULL); SordNode* lit6 = sord_new_literal(world, NULL, USTR("hello"), "en-ca"); if (lit4 == lit5 || sord_node_equals(lit4, lit5) || lit4 == lit6 || sord_node_equals(lit4, lit6) || lit5 == lit6 || sord_node_equals(lit5, lit6)) { fprintf(stderr, "Fail: Literal interning failed (type/lang clash)\n"); return finished(world, sord, EXIT_FAILURE); } // Check relative URI construction SordNode* reluri = sord_new_relative_uri(world, USTR("a/b"), USTR("http://example.org/")); if (strcmp((const char*)sord_node_get_string(reluri), "http://example.org/a/b")) { fprintf(stderr, "Fail: Bad relative URI constructed: <%s>\n", sord_node_get_string(reluri)); return finished(world, sord, EXIT_FAILURE); } SordNode* reluri2 = sord_new_relative_uri( world, USTR("http://drobilla.net/"), USTR("http://example.org/")); if (strcmp((const char*)sord_node_get_string(reluri2), "http://drobilla.net/")) { fprintf(stderr, "Fail: Bad relative URI constructed: <%s>\n", sord_node_get_string(reluri)); return finished(world, sord, EXIT_FAILURE); } // Check comparison with NULL sord_node_free(world, uri_id); sord_node_free(world, blank_id); sord_node_free(world, lit_id); sord_node_free(world, uri_id2); sord_node_free(world, blank_id2); sord_node_free(world, lit_id2); sord_node_free(world, uri_id3); sord_node_free(world, blank_id3); sord_node_free(world, lit_id3); sord_free(sord); static const char* const index_names[6] = { "spo", "sop", "ops", "osp", "pso", "pos"}; for (int i = 0; i < 6; ++i) { sord = sord_new(world, (1 << i), false); printf("Testing Index `%s'\n", index_names[i]); generate(world, sord, n_quads, 0); if (test_read(world, sord, 0, n_quads)) { return finished(world, sord, EXIT_FAILURE); } sord_free(sord); } static const char* const graph_index_names[6] = { "gspo", "gsop", "gops", "gosp", "gpso", "gpos"}; for (int i = 0; i < 6; ++i) { sord = sord_new(world, (1 << i), true); printf("Testing Index `%s'\n", graph_index_names[i]); SordNode* graph = uri(world, 42); generate(world, sord, n_quads, graph); if (test_read(world, sord, graph, n_quads)) { return finished(world, sord, EXIT_FAILURE); } sord_free(sord); } // Test removing sord = sord_new(world, SORD_SPO, true); tup[0] = uri(world, 1); tup[1] = uri(world, 2); tup[2] = sord_new_literal(world, 0, USTR("hello"), NULL); tup[3] = 0; sord_add(sord, tup); if (!sord_ask(sord, tup[0], tup[1], tup[2], tup[3])) { fprintf(stderr, "Failed to add tuple\n"); return finished(world, sord, EXIT_FAILURE); } sord_node_free(world, (SordNode*)tup[2]); tup[2] = sord_new_literal(world, 0, USTR("hi"), NULL); sord_add(sord, tup); sord_remove(sord, tup); if (sord_num_quads(sord) != 1) { fprintf( stderr, "Remove failed (%zu quads, expected 1)\n", sord_num_quads(sord)); return finished(world, sord, EXIT_FAILURE); } iter = sord_find(sord, tup); if (!sord_iter_end(iter)) { fprintf(stderr, "Found removed tuple\n"); return finished(world, sord, EXIT_FAILURE); } sord_iter_free(iter); // Test double remove (silent success) sord_remove(sord, tup); // Load a couple graphs SordNode* graph42 = uri(world, 42); SordNode* graph43 = uri(world, 43); generate(world, sord, 1, graph42); generate(world, sord, 1, graph43); // Remove one graph via iterator SerdStatus st; iter = sord_search(sord, NULL, NULL, NULL, graph43); while (!sord_iter_end(iter)) { if ((st = sord_erase(sord, iter))) { fprintf(stderr, "Remove by iterator failed (%s)\n", serd_strerror(st)); return finished(world, sord, EXIT_FAILURE); } } sord_iter_free(iter); // Erase the first tuple (an element in the default graph) iter = sord_begin(sord); if (sord_erase(sord, iter)) { return test_fail("Failed to erase begin iterator on non-empty model\n"); } sord_iter_free(iter); // Ensure only the other graph is left SordQuad quad; SordQuad pat = {0, 0, 0, graph42}; for (iter = sord_begin(sord); !sord_iter_end(iter); sord_iter_next(iter)) { sord_iter_get(iter, quad); if (!sord_quad_match(quad, pat)) { fprintf(stderr, "Graph removal via iteration failed\n"); return finished(world, sord, EXIT_FAILURE); } } sord_iter_free(iter); // Load file into two separate graphs sord_free(sord); sord = sord_new(world, SORD_SPO, true); env = serd_env_new(&base); SordNode* graph1 = sord_new_uri(world, USTR("http://example.org/graph1")); SordNode* graph2 = sord_new_uri(world, USTR("http://example.org/graph2")); SerdReader* reader = sord_new_reader(sord, env, SERD_TURTLE, graph1); if ((st = serd_reader_read_string(reader, USTR("

.")))) { fprintf(stderr, "Failed to read string (%s)\n", serd_strerror(st)); return finished(world, sord, EXIT_FAILURE); } serd_reader_free(reader); reader = sord_new_reader(sord, env, SERD_TURTLE, graph2); if ((st = serd_reader_read_string(reader, USTR("

.")))) { fprintf(stderr, "Failed to re-read string (%s)\n", serd_strerror(st)); return finished(world, sord, EXIT_FAILURE); } serd_reader_free(reader); serd_env_free(env); // Ensure we only see triple once size_t n_triples = 0; for (iter = sord_begin(sord); !sord_iter_end(iter); sord_iter_next(iter)) { fprintf(stderr, "%s %s %s %s\n", sord_node_get_string(sord_iter_get_node(iter, SORD_SUBJECT)), sord_node_get_string(sord_iter_get_node(iter, SORD_PREDICATE)), sord_node_get_string(sord_iter_get_node(iter, SORD_OBJECT)), sord_node_get_string(sord_iter_get_node(iter, SORD_GRAPH))); ++n_triples; } sord_iter_free(iter); if (n_triples != 1) { fprintf(stderr, "Found duplicate triple\n"); return finished(world, sord, EXIT_FAILURE); } // Test SPO iteration on an SOP indexed store sord_free(sord); sord = sord_new(world, SORD_SOP, false); generate(world, sord, 1, graph42); for (iter = sord_begin(sord); !sord_iter_end(iter); sord_iter_next(iter)) { ++n_triples; } sord_iter_free(iter); return finished(world, sord, EXIT_SUCCESS); }