/* Copyright 2011-2020 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #undef NDEBUG #define ZIX_HASH_KEY_TYPE const char #define ZIX_HASH_RECORD_TYPE const char #include "test_data.h" #include "test_malloc.h" #include "zix/attributes.h" #include "zix/common.h" #include "zix/digest.h" #include "zix/hash.h" #include #include #include #include #include #include #include #include static bool expect_failure = false; ZIX_LOG_FUNC(1, 2) static int test_fail(const char* fmt, ...) { if (expect_failure) { return 0; } va_list args; va_start(args, fmt); fprintf(stderr, "error: "); vfprintf(stderr, fmt, args); va_end(args); return 1; } ZIX_PURE_FUNC static const char* identity(const char* record) { return record; } /// Decent hash function using zix_digest (murmur2) ZIX_PURE_FUNC static size_t decent_string_hash(const char* const str) { return zix_digest(0u, str, strlen(str)); } /// Terrible hash function from K&R first edition ZIX_PURE_FUNC static size_t terrible_string_hash(const char* str) { size_t hash = 0u; uint8_t c = 0u; while ((c = (uint8_t)*str++)) { hash += c; } return hash; } ZIX_PURE_FUNC static size_t string_hash_aligned(const char* const str) { size_t length = strlen(str); length = (length + (sizeof(size_t) - 1)) / sizeof(size_t) * sizeof(size_t); return zix_digest_aligned(0u, str, length); } ZIX_PURE_FUNC static size_t string_hash32(const char* const str) { return (size_t)zix_digest32(0u, str, strlen(str)); } ZIX_PURE_FUNC static size_t string_hash64(const char* const str) { return (size_t)zix_digest64(0u, str, strlen(str)); } ZIX_PURE_FUNC static size_t string_hash32_aligned(const char* const str) { size_t length = strlen(str); length = (length + 3u) / 4u * 4u; return (size_t)zix_digest32_aligned(0u, str, length); } #if UINTPTR_MAX >= UINT64_MAX ZIX_PURE_FUNC static size_t string_hash64_aligned(const char* const str) { size_t length = strlen(str); length = (length + 7u) / 8u * 8u; return (size_t)zix_digest64_aligned(0u, str, length); } #endif static bool string_equal(const char* const a, const char* const b) { return !strcmp(a, b); } static int stress_with(const ZixHashFunc hash_func, const size_t n_elems) { ZixHash* hash = zix_hash_new(identity, hash_func, string_equal); if (!hash) { return test_fail("Failed to allocate hash\n"); } static const size_t string_length = 15; char* const buffer = (char*)calloc(1, n_elems * (string_length + 1)); char** const strings = (char**)calloc(sizeof(char*), n_elems); if (!buffer || !strings) { free(buffer); free(strings); return test_fail("Failed to allocate strings\n"); } uint32_t seed = 1u; for (size_t i = 0u; i < n_elems; ++i) { strings[i] = buffer + i * (string_length + 1); assert((uintptr_t)strings[i] % sizeof(size_t) == 0); assert((uintptr_t)strings[i] % sizeof(uint32_t) == 0); for (size_t j = 0u; j < string_length; ++j) { seed = lcg32(seed); strings[i][j] = (char)('!' + (seed % 92)); } } // Insert each string for (size_t i = 0; i < n_elems; ++i) { ZixStatus st = zix_hash_insert(hash, strings[i]); if (st) { return test_fail("Failed to insert `%s'\n", strings[i]); } } // Ensure hash size is correct if (zix_hash_size(hash) != n_elems) { return test_fail( "Hash size %" PRIuPTR " != %" PRIuPTR "\n", zix_hash_size(hash), n_elems); } // Attempt to insert each string again for (size_t i = 0; i < n_elems; ++i) { ZixStatus st = zix_hash_insert(hash, strings[i]); if (st != ZIX_STATUS_EXISTS) { return test_fail( "Double inserted `%s' (%s)\n", strings[i], zix_strerror(st)); } } // Search for each string for (size_t i = 0; i < n_elems; ++i) { const char* match = (const char*)zix_hash_find_record(hash, strings[i]); if (!match) { return test_fail("Failed to find `%s'\n", strings[i]); } if (match != strings[i]) { return test_fail("Bad match for `%s': `%s'\n", strings[i], match); } } static const char* const not_indexed_string = "__not__indexed__"; // Do a quick smoke test to ensure that false matches don't succeed char* const not_indexed = (char*)calloc(1, strlen(not_indexed_string) + 1); if (not_indexed) { memcpy(not_indexed, not_indexed_string, strlen(not_indexed_string) + 1); const char* match = (const char*)zix_hash_find_record(hash, not_indexed); if (match) { return test_fail("Unexpectedly found `%s'\n", not_indexed); } free(not_indexed); } // Remove strings for (size_t i = 0; i < n_elems; ++i) { const size_t initial_size = zix_hash_size(hash); // Remove string const char* removed = NULL; ZixStatus st = zix_hash_remove(hash, strings[i], &removed); if (st) { return test_fail("Failed to remove `%s'\n", strings[i]); } // Ensure the removed value is what we expected if (removed != strings[i]) { return test_fail("Removed `%s` instead of `%s`\n", removed, strings[i]); } // Ensure size is updated if (zix_hash_size(hash) != initial_size - 1) { return test_fail("Removing node did not decrease hash size\n"); } // Ensure second removal fails st = zix_hash_remove(hash, strings[i], &removed); if (st != ZIX_STATUS_NOT_FOUND) { return test_fail("Unexpectedly removed `%s' twice\n", strings[i]); } // Ensure value can no longer be found assert(zix_hash_find(hash, strings[i]) == zix_hash_end(hash)); // Check to ensure remaining strings are still present for (size_t j = i + 1; j < n_elems; ++j) { const char* match = (const char*)zix_hash_find_record(hash, strings[j]); if (!match) { return test_fail("Failed to find `%s' after remove\n", strings[j]); } if (match != strings[j]) { return test_fail("Bad match for `%s' after remove\n", strings[j]); } } } // Insert each string again (to check non-empty destruction) for (size_t i = 0; i < n_elems; ++i) { ZixHashInsertPlan plan = zix_hash_plan_insert(hash, strings[i]); assert(!zix_hash_record_at(hash, plan)); ZixStatus st = zix_hash_insert_at(hash, plan, strings[i]); if (st) { return test_fail("Failed to insert `%s'\n", strings[i]); } } // Check key == value (and test zix_hash_foreach) size_t n_checked = 0u; for (ZixHashIter i = zix_hash_begin(hash); i != zix_hash_end(hash); i = zix_hash_next(hash, i)) { const char* const string = (const char*)zix_hash_get(hash, i); assert(string); if (strlen(string) < 3) { return test_fail("Corrupt value `%s'\n", string); } ++n_checked; } if (n_checked != n_elems) { return test_fail("Check failed\n"); } free(strings); free(buffer); zix_hash_free(hash); return 0; } static int stress(const size_t n_elems) { if (stress_with(decent_string_hash, n_elems) || stress_with(terrible_string_hash, n_elems / 4) || stress_with(string_hash_aligned, n_elems / 4) || stress_with(string_hash32, n_elems / 4) || stress_with(string_hash64, n_elems / 4) || stress_with(string_hash32_aligned, n_elems / 4)) { return 1; } #if UINTPTR_MAX >= UINT64_MAX if (stress_with(string_hash64_aligned, n_elems / 4)) { return 1; } #endif return 0; } /// Identity hash function for numeric strings for explicitly hitting cases ZIX_PURE_FUNC static size_t identity_index_hash(const char* const str) { return strtoul(str, NULL, 10); } static void test_all_tombstones(void) { /* This tests an edge case where a minimum-sized table can be entirely full of tombstones. If the search loop is not written carefully, then this can result in a hang. This has been seen to occur in real code, though it's very hard to hit with a decent hash function. So, we use the above degenerate index hashing function to explicitly place elements exactly where we want to hit this case. */ #define N_STRINGS 4 static const char* original_strings[N_STRINGS] = { "0 a", "1 a", "2 a", "3 a", }; static const char* collision_strings[N_STRINGS] = { "0 b", "1 b", "2 b", "3 b", }; ZixStatus st = ZIX_STATUS_SUCCESS; ZixHash* hash = zix_hash_new(identity, identity_index_hash, string_equal); // Insert each element then immediately remove it for (unsigned i = 0u; i < N_STRINGS; ++i) { const char* removed = NULL; assert(!zix_hash_insert(hash, original_strings[i])); assert(!zix_hash_remove(hash, original_strings[i], &removed)); } // Now the table should be "empty" but contain tombstones assert(zix_hash_size(hash) == 0); // Insert clashing elements which should hit the "all tombstones" case for (unsigned i = 0u; i < N_STRINGS; ++i) { assert(!zix_hash_insert(hash, collision_strings[i])); assert(!st); } zix_hash_free(hash); #undef N_STRINGS } int main(void) { zix_hash_free(NULL); test_all_tombstones(); static const size_t n_elems = 1024u; if (stress(n_elems)) { return 1; } #ifdef ZIX_WITH_TEST_MALLOC const size_t total_n_allocs = test_malloc_get_n_allocs(); printf("Testing 0 ... %" PRIuPTR " failed allocations\n", total_n_allocs); expect_failure = true; for (size_t i = 0; i < total_n_allocs; ++i) { test_malloc_reset(i); stress(n_elems); } test_malloc_reset((size_t)-1); #endif return 0; }