/* Copyright 2011-2020 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "zix/tree.h" #include "zix/common.h" #include #include #include #include #include #include static unsigned seed = 1; static int int_cmp(const void* a, const void* b, const void* ZIX_UNUSED(user_data)) { const intptr_t ia = (intptr_t)a; const intptr_t ib = (intptr_t)b; return ia < ib ? -1 : ia > ib ? 1 : 0; } static uintptr_t ith_elem(unsigned test_num, size_t n_elems, size_t i) { switch (test_num % 3) { case 0: return i; // Increasing (worst case) case 1: return n_elems - i; // Decreasing (worse case) case 2: default: return rand() % 100; // Random } } static int test_fail(void) { return EXIT_FAILURE; } static int stress(unsigned test_num, size_t n_elems) { intptr_t r = 0; ZixTreeIter* ti = NULL; ZixTree* t = zix_tree_new(true, int_cmp, NULL, NULL); srand(seed); // Insert n_elems elements for (size_t i = 0; i < n_elems; ++i) { r = ith_elem(test_num, n_elems, i); int status = zix_tree_insert(t, (void*)r, &ti); if (status) { fprintf(stderr, "Insert failed\n"); return test_fail(); } if ((intptr_t)zix_tree_get(ti) != r) { fprintf(stderr, "Data corrupt (%" PRIdPTR " != %" PRIdPTR ")\n", (intptr_t)zix_tree_get(ti), r); return test_fail(); } } // Ensure tree size is correct if (zix_tree_size(t) != n_elems) { fprintf(stderr, "Tree size %" PRIuPTR " != %" PRIuPTR "\n", zix_tree_size(t), n_elems); return test_fail(); } srand(seed); // Search for all elements for (size_t i = 0; i < n_elems; ++i) { r = ith_elem(test_num, n_elems, i); if (zix_tree_find(t, (void*)r, &ti)) { fprintf(stderr, "Find failed\n"); return test_fail(); } if ((intptr_t)zix_tree_get(ti) != r) { fprintf(stderr, "Data corrupt (%" PRIdPTR " != %" PRIdPTR ")\n", (intptr_t)zix_tree_get(ti), r); return test_fail(); } } srand(seed); // Iterate over all elements size_t i = 0; intptr_t last = -1; for (ZixTreeIter* iter = zix_tree_begin(t); !zix_tree_iter_is_end(iter); iter = zix_tree_iter_next(iter), ++i) { const intptr_t iter_data = (intptr_t)zix_tree_get(iter); if (iter_data < last) { fprintf(stderr, "Iter corrupt (%" PRIdPTR " < %" PRIdPTR ")\n", iter_data, last); return test_fail(); } last = iter_data; } if (i != n_elems) { fprintf(stderr, "Iteration stopped at %" PRIuPTR "/%" PRIuPTR " elements\n", i, n_elems); return test_fail(); } srand(seed); // Iterate over all elements backwards i = 0; last = INTPTR_MAX; for (ZixTreeIter* iter = zix_tree_rbegin(t); !zix_tree_iter_is_rend(iter); iter = zix_tree_iter_prev(iter), ++i) { const intptr_t iter_data = (intptr_t)zix_tree_get(iter); if (iter_data > last) { fprintf(stderr, "Iter corrupt (%" PRIdPTR " < %" PRIdPTR ")\n", iter_data, last); return test_fail(); } last = iter_data; } srand(seed); // Delete all elements for (size_t e = 0; e < n_elems; e++) { r = ith_elem(test_num, n_elems, e); ZixTreeIter* item = NULL; if (zix_tree_find(t, (void*)r, &item) != ZIX_STATUS_SUCCESS) { fprintf(stderr, "Failed to find item to remove\n"); return test_fail(); } if (zix_tree_remove(t, item)) { fprintf(stderr, "Error removing item\n"); } } // Ensure the tree is empty if (zix_tree_size(t) != 0) { fprintf(stderr, "Tree size %" PRIuPTR " != 0\n", zix_tree_size(t)); return test_fail(); } srand(seed); // Insert n_elems elements again (to test non-empty destruction) for (size_t e = 0; e < n_elems; ++e) { r = ith_elem(test_num, n_elems, e); int status = zix_tree_insert(t, (void*)r, &ti); if (status) { fprintf(stderr, "Insert failed\n"); return test_fail(); } if ((intptr_t)zix_tree_get(ti) != r) { fprintf(stderr, "Data corrupt (%" PRIdPTR " != %" PRIdPTR ")\n", (intptr_t)zix_tree_get(ti), r); return test_fail(); } } // Ensure tree size is correct if (zix_tree_size(t) != n_elems) { fprintf(stderr, "Tree size %" PRIuPTR " != %" PRIuPTR "\n", zix_tree_size(t), n_elems); return test_fail(); } zix_tree_free(t); return EXIT_SUCCESS; } int main(int argc, char** argv) { const unsigned n_tests = 3; unsigned n_elems = 0; if (argc == 1) { n_elems = 100000; } else { n_elems = (unsigned)atol(argv[1]); if (argc > 2) { seed = (unsigned)atol(argv[2]); } else { seed = (unsigned)time(NULL); } } if (n_elems == 0) { fprintf(stderr, "USAGE: %s [N_ELEMS]\n", argv[0]); return 1; } printf("Running %u tests with %u elements (seed %u)", n_tests, n_elems, seed); for (unsigned i = 0; i < n_tests; ++i) { printf("."); fflush(stdout); if (stress(i, n_elems)) { fprintf(stderr, "FAIL: Random seed %u\n", seed); return test_fail(); } } printf("\n"); return EXIT_SUCCESS; }