/* Copyright 2011-2014 David Robillard Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #ifdef _MSC_VER # define PRIdPTR "Id" #else # include #endif #include "zix/zix.h" unsigned seed = 1; // Return a pseudo-pseudo-pseudo-random-ish integer with no duplicates static uint32_t unique_rand(uint32_t i) { i ^= 0x5CA1AB1E; // Juggle bits to avoid linear clumps // Largest prime < 2^32 which satisfies (2^32 = 3 mod 4) static const uint32_t prime = 4294967291; if (i >= prime) { return i; // Values >= prime are mapped to themselves } else { const uint32_t residue = ((uint64_t)i * i) % prime; return (i <= prime / 2) ? residue : prime - residue; } } static int int_cmp(const void* a, const void* b, void* user_data) { const intptr_t ia = (intptr_t)a; const intptr_t ib = (intptr_t)b; // note the (ia - ib) trick here would overflow if (ia == ib) { return 0; } else if (ia < ib) { return -1; } else { return 1; } } static uint32_t ith_elem(int test_num, size_t n_elems, int i) { switch (test_num % 3) { case 0: return i; // Increasing case 1: return n_elems - i - 1; // Decreasing default: return unique_rand(i); // Pseudo-random } } static int test_fail(const char* fmt, ...) { va_list args; va_start(args, fmt); fprintf(stderr, "error: "); vfprintf(stderr, fmt, args); va_end(args); return EXIT_FAILURE; } static int stress(int test_num, size_t n_elems) { intptr_t r = 0; ZixBTreeIter* ti = NULL; ZixBTree* t = zix_btree_new(int_cmp, NULL, NULL); // Ensure begin iterator is end on empty tree ti = zix_btree_begin(t); if (!zix_btree_iter_is_end(ti)) { return test_fail("Begin iterator on empty tree is not end\n"); } zix_btree_iter_free(ti); // Insert n_elems elements for (size_t i = 0; i < n_elems; ++i) { r = ith_elem(test_num, n_elems, i); if (zix_btree_insert(t, (void*)r)) { return test_fail("Insert failed\n"); } } // Ensure tree size is correct if (zix_btree_size(t) != n_elems) { return test_fail("Tree size %zu != %zu\n", zix_btree_size(t), n_elems); } // Search for all elements for (size_t i = 0; i < n_elems; ++i) { r = ith_elem(test_num, n_elems, i); if (zix_btree_find(t, (void*)r, &ti)) { return test_fail("Find %lu @ %zu failed\n", (uintptr_t)r, i); } if ((intptr_t)zix_btree_get(ti) != r) { return test_fail("Corrupt search: %" PRIdPTR " != %" PRIdPTR "\n", (intptr_t)zix_btree_get(ti), r); } zix_btree_iter_free(ti); } // Search for elements that don't exist for (size_t i = 0; i < n_elems; ++i) { r = ith_elem(test_num, n_elems * 3, n_elems + i); if (!zix_btree_find(t, (void*)r, &ti)) { return test_fail("Unexpectedly found %lu\n", (uintptr_t)r); } } // Iterate over all elements size_t i = 0; intptr_t last = -1; for (ti = zix_btree_begin(t); !zix_btree_iter_is_end(ti); zix_btree_iter_increment(ti), ++i) { const intptr_t iter_data = (intptr_t)zix_btree_get(ti); if (iter_data < last) { return test_fail("Corrupt iter: %" PRIdPTR " < %" PRIdPTR "\n", iter_data, last); } last = iter_data; } zix_btree_iter_free(ti); if (i != n_elems) { return test_fail("Iteration stopped at %zu/%zu elements\n", i, n_elems); } // Insert n_elems elements again, ensuring duplicates fail for (i = 0; i < n_elems; ++i) { r = ith_elem(test_num, n_elems, i); if (!zix_btree_insert(t, (void*)r)) { return test_fail("Duplicate insert succeeded\n"); } } // Search for the middle element then iterate from there r = ith_elem(test_num, n_elems, n_elems / 2); if (zix_btree_find(t, (void*)r, &ti)) { return test_fail("Find %lu failed\n", (uintptr_t)r); } zix_btree_iter_increment(ti); for (i = 0; !zix_btree_iter_is_end(ti); zix_btree_iter_increment(ti), ++i) { if ((intptr_t)zix_btree_get(ti) == r) { return test_fail("Duplicate element %" PRIdPTR "\n", (intptr_t)zix_btree_get(ti), r); } r = ith_elem(test_num, n_elems, n_elems / 2 + i + 1); } zix_btree_iter_free(ti); // Delete all elements for (size_t e = 0; e < n_elems; e++) { r = ith_elem(test_num, n_elems, e); if (zix_btree_remove(t, (void*)r)) { return test_fail("Error removing item %lu\n", (uintptr_t)r); } } // Ensure the tree is empty if (zix_btree_size(t) != 0) { return test_fail("Tree size %zu != 0\n", zix_btree_size(t)); } // Insert n_elems elements again (to test non-empty destruction) for (size_t e = 0; e < n_elems; ++e) { r = ith_elem(test_num, n_elems, e); if (zix_btree_insert(t, (void*)r)) { return test_fail("Post-deletion insert failed\n"); } } // Delete elements that don't exist for (size_t e = 0; e < n_elems; e++) { r = ith_elem(test_num, n_elems * 3, n_elems + e); if (!zix_btree_remove(t, (void*)r)) { return test_fail("Unexpected successful deletion of %lu\n", (uintptr_t)r); } } // Ensure tree size is still correct if (zix_btree_size(t) != n_elems) { return test_fail("Tree size %zu != %zu\n", zix_btree_size(t), n_elems); } // Delete some elements towards the end for (size_t e = 0; e < n_elems / 4; e++) { r = ith_elem(test_num, n_elems, n_elems - (n_elems / 4) + e); if (zix_btree_remove(t, (void*)r)) { return test_fail("Deletion of %lu faileded\n", (uintptr_t)r); } } // Check tree size if (zix_btree_size(t) != n_elems - (n_elems / 4)) { return test_fail("Tree size %zu != %zu\n", zix_btree_size(t), n_elems); } zix_btree_free(t); return EXIT_SUCCESS; } int main(int argc, char** argv) { if (argc > 2) { fprintf(stderr, "Usage: %s [N_ELEMS]\n", argv[0]); return EXIT_FAILURE; } const unsigned n_tests = 3; unsigned n_elems = (argc > 1) ? atol(argv[1]) : 10000; printf("Running %u tests with %u elements", n_tests, n_elems); for (unsigned i = 0; i < n_tests; ++i) { printf("."); fflush(stdout); if (stress(i, n_elems)) { return EXIT_FAILURE; } } printf("\n"); return EXIT_SUCCESS; }