summaryrefslogtreecommitdiffstats
path: root/gst/replaygain/rganalysis.c
diff options
context:
space:
mode:
Diffstat (limited to 'gst/replaygain/rganalysis.c')
-rw-r--r--gst/replaygain/rganalysis.c777
1 files changed, 0 insertions, 777 deletions
diff --git a/gst/replaygain/rganalysis.c b/gst/replaygain/rganalysis.c
deleted file mode 100644
index 147eef85..00000000
--- a/gst/replaygain/rganalysis.c
+++ /dev/null
@@ -1,777 +0,0 @@
-/* GStreamer ReplayGain analysis
- *
- * Copyright (C) 2006 Rene Stadler <mail@renestadler.de>
- * Copyright (C) 2001 David Robinson <David@Robinson.org>
- * Glen Sawyer <glensawyer@hotmail.com>
- *
- * rganalysis.c: Analyze raw audio data in accordance with ReplayGain
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public License
- * as published by the Free Software Foundation; either version 2.1 of
- * the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301 USA
- */
-
-/* Based on code with Copyright (C) 2001 David Robinson
- * <David@Robinson.org> and Glen Sawyer <glensawyer@hotmail.com>,
- * which is distributed under the LGPL as part of the vorbisgain
- * program. The original code also mentions Frank Klemm
- * (http://www.uni-jena.de/~pfk/mpp/) for having contributed lots of
- * good code. Specifically, this is based on the file
- * "gain_analysis.c" from vorbisgain version 0.34.
- */
-
-/* Room for future improvement: Mono data is currently in fact copied
- * to two channels which get processed normally. This means that mono
- * input data is processed twice.
- */
-
-/* Helpful information for understanding this code: The two IIR
- * filters depend on previous input _and_ previous output samples (up
- * to the filter's order number of samples). This explains the whole
- * lot of memcpy'ing done in rg_analysis_analyze and why the context
- * holds so many buffers.
- */
-
-#include <math.h>
-#include <string.h>
-#include <glib.h>
-
-#include "rganalysis.h"
-
-#define YULE_ORDER 10
-#define BUTTER_ORDER 2
-/* Percentile which is louder than the proposed level: */
-#define RMS_PERCENTILE 95
-/* Duration of RMS window in milliseconds: */
-#define RMS_WINDOW_MSECS 50
-/* Histogram array elements per dB: */
-#define STEPS_PER_DB 100
-/* Histogram upper bound in dB (normal max. values in the wild are
- * assumed to be around 70, 80 dB): */
-#define MAX_DB 120
-/* Calibration value: */
-#define PINK_REF 64.82 /* 298640883795 */
-
-#define MAX_ORDER MAX (BUTTER_ORDER, YULE_ORDER)
-#define MAX_SAMPLE_RATE 48000
-/* The + 999 has the effect of ceil()ing: */
-#define MAX_SAMPLE_WINDOW (guint) \
- ((MAX_SAMPLE_RATE * RMS_WINDOW_MSECS + 999) / 1000)
-
-/* Analysis result accumulator. */
-
-struct _RgAnalysisAcc
-{
- guint32 histogram[STEPS_PER_DB * MAX_DB];
- gdouble peak;
-};
-
-typedef struct _RgAnalysisAcc RgAnalysisAcc;
-
-/* Analysis context. */
-
-struct _RgAnalysisCtx
-{
- /* Filter buffers for left channel. */
- gfloat inprebuf_l[MAX_ORDER * 2];
- gfloat *inpre_l;
- gfloat stepbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER];
- gfloat *step_l;
- gfloat outbuf_l[MAX_SAMPLE_WINDOW + MAX_ORDER];
- gfloat *out_l;
- /* Filter buffers for right channel. */
- gfloat inprebuf_r[MAX_ORDER * 2];
- gfloat *inpre_r;
- gfloat stepbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER];
- gfloat *step_r;
- gfloat outbuf_r[MAX_SAMPLE_WINDOW + MAX_ORDER];
- gfloat *out_r;
-
- /* Number of samples to reach duration of the RMS window: */
- guint window_n_samples;
- /* Progress of the running window: */
- guint window_n_samples_done;
- gdouble window_square_sum;
-
- gint sample_rate;
- gint sample_rate_index;
-
- RgAnalysisAcc track;
- RgAnalysisAcc album;
-};
-
-/* Filter coefficients for the IIR filters that form the equal
- * loudness filter. XFilter[ctx->sample_rate_index] gives the array
- * of the X coefficients (A or B) for the configured sample rate. */
-
-#ifdef _MSC_VER
-/* Disable double-to-float warning: */
-/* A better solution would be to append 'f' to each constant, but that
- * makes the code ugly. */
-#pragma warning ( disable : 4305 )
-#endif
-
-static const gfloat AYule[9][11] = {
- {1., -3.84664617118067, 7.81501653005538, -11.34170355132042,
- 13.05504219327545, -12.28759895145294, 9.48293806319790,
- -5.87257861775999, 2.75465861874613, -0.86984376593551,
- 0.13919314567432},
- {1., -3.47845948550071, 6.36317777566148, -8.54751527471874, 9.47693607801280,
- -8.81498681370155, 6.85401540936998, -4.39470996079559,
- 2.19611684890774, -0.75104302451432, 0.13149317958808},
- {1., -2.37898834973084, 2.84868151156327, -2.64577170229825, 2.23697657451713,
- -1.67148153367602, 1.00595954808547, -0.45953458054983,
- 0.16378164858596, -0.05032077717131, 0.02347897407020},
- {1., -1.61273165137247, 1.07977492259970, -0.25656257754070,
- -0.16276719120440, -0.22638893773906, 0.39120800788284,
- -0.22138138954925, 0.04500235387352, 0.02005851806501,
- 0.00302439095741},
- {1., -1.49858979367799, 0.87350271418188, 0.12205022308084, -0.80774944671438,
- 0.47854794562326, -0.12453458140019, -0.04067510197014,
- 0.08333755284107, -0.04237348025746, 0.02977207319925},
- {1., -0.62820619233671, 0.29661783706366, -0.37256372942400, 0.00213767857124,
- -0.42029820170918, 0.22199650564824, 0.00613424350682, 0.06747620744683,
- 0.05784820375801, 0.03222754072173},
- {1., -1.04800335126349, 0.29156311971249, -0.26806001042947, 0.00819999645858,
- 0.45054734505008, -0.33032403314006, 0.06739368333110,
- -0.04784254229033, 0.01639907836189, 0.01807364323573},
- {1., -0.51035327095184, -0.31863563325245, -0.20256413484477,
- 0.14728154134330, 0.38952639978999, -0.23313271880868,
- -0.05246019024463, -0.02505961724053, 0.02442357316099,
- 0.01818801111503},
- {1., -0.25049871956020, -0.43193942311114, -0.03424681017675,
- -0.04678328784242, 0.26408300200955, 0.15113130533216,
- -0.17556493366449, -0.18823009262115, 0.05477720428674,
- 0.04704409688120}
-};
-
-static const gfloat BYule[9][11] = {
- {0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959,
- -0.01655260341619, 0.02161526843274, -0.02074045215285,
- 0.00594298065125, 0.00306428023191, 0.00012025322027, 0.00288463683916},
- {0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469,
- -0.00834990904936, 0.02245293253339, -0.02596338512915,
- 0.01624864962975, -0.00240879051584, 0.00674613682247,
- -0.00187763777362},
- {0.15457299681924, -0.09331049056315, -0.06247880153653, 0.02163541888798,
- -0.05588393329856, 0.04781476674921, 0.00222312597743, 0.03174092540049,
- -0.01390589421898, 0.00651420667831, -0.00881362733839},
- {0.30296907319327, -0.22613988682123, -0.08587323730772, 0.03282930172664,
- -0.00915702933434, -0.02364141202522, -0.00584456039913,
- 0.06276101321749, -0.00000828086748, 0.00205861885564,
- -0.02950134983287},
- {0.33642304856132, -0.25572241425570, -0.11828570177555, 0.11921148675203,
- -0.07834489609479, -0.00469977914380, -0.00589500224440,
- 0.05724228140351, 0.00832043980773, -0.01635381384540,
- -0.01760176568150},
- {0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551,
- 0.04078262797139, -0.12398163381748, 0.04097565135648, 0.10478503600251,
- -0.01863887810927, -0.03193428438915, 0.00541907748707},
- {0.56619470757641, -0.75464456939302, 0.16242137742230, 0.16744243493672,
- -0.18901604199609, 0.30931782841830, -0.27562961986224,
- 0.00647310677246, 0.08647503780351, -0.03788984554840,
- -0.00588215443421},
- {0.58100494960553, -0.53174909058578, -0.14289799034253, 0.17520704835522,
- 0.02377945217615, 0.15558449135573, -0.25344790059353, 0.01628462406333,
- 0.06920467763959, -0.03721611395801, -0.00749618797172},
- {0.53648789255105, -0.42163034350696, -0.00275953611929, 0.04267842219415,
- -0.10214864179676, 0.14590772289388, -0.02459864859345,
- -0.11202315195388, -0.04060034127000, 0.04788665548180,
- -0.02217936801134}
-};
-
-static const gfloat AButter[9][3] = {
- {1., -1.97223372919527, 0.97261396931306},
- {1., -1.96977855582618, 0.97022847566350},
- {1., -1.95835380975398, 0.95920349965459},
- {1., -1.95002759149878, 0.95124613669835},
- {1., -1.94561023566527, 0.94705070426118},
- {1., -1.92783286977036, 0.93034775234268},
- {1., -1.91858953033784, 0.92177618768381},
- {1., -1.91542108074780, 0.91885558323625},
- {1., -1.88903307939452, 0.89487434461664}
-};
-
-static const gfloat BButter[9][3] = {
- {0.98621192462708, -1.97242384925416, 0.98621192462708},
- {0.98500175787242, -1.97000351574484, 0.98500175787242},
- {0.97938932735214, -1.95877865470428, 0.97938932735214},
- {0.97531843204928, -1.95063686409857, 0.97531843204928},
- {0.97316523498161, -1.94633046996323, 0.97316523498161},
- {0.96454515552826, -1.92909031105652, 0.96454515552826},
- {0.96009142950541, -1.92018285901082, 0.96009142950541},
- {0.95856916599601, -1.91713833199203, 0.95856916599601},
- {0.94597685600279, -1.89195371200558, 0.94597685600279}
-};
-
-#ifdef _MSC_VER
-#pragma warning ( default : 4305 )
-#endif
-
-/* Filter functions. These access elements with negative indices of
- * the input and output arrays (up to the filter's order). */
-
-/* For much better performance, the function below has been
- * implemented by unrolling the inner loop for our two use cases. */
-
-/*
- * static inline void
- * apply_filter (const gfloat * input, gfloat * output, guint n_samples,
- * const gfloat * a, const gfloat * b, guint order)
- * {
- * gfloat y;
- * gint i, k;
- *
- * for (i = 0; i < n_samples; i++) {
- * y = input[i] * b[0];
- * for (k = 1; k <= order; k++)
- * y += input[i - k] * b[k] - output[i - k] * a[k];
- * output[i] = y;
- * }
- * }
- */
-
-static inline void
-yule_filter (const gfloat * input, gfloat * output,
- const gfloat * a, const gfloat * b)
-{
- /* 1e-10 is added below to avoid running into denormals when operating on
- * near silence. */
-
- output[0] = 1e-10 + input[0] * b[0]
- + input[-1] * b[1] - output[-1] * a[1]
- + input[-2] * b[2] - output[-2] * a[2]
- + input[-3] * b[3] - output[-3] * a[3]
- + input[-4] * b[4] - output[-4] * a[4]
- + input[-5] * b[5] - output[-5] * a[5]
- + input[-6] * b[6] - output[-6] * a[6]
- + input[-7] * b[7] - output[-7] * a[7]
- + input[-8] * b[8] - output[-8] * a[8]
- + input[-9] * b[9] - output[-9] * a[9]
- + input[-10] * b[10] - output[-10] * a[10];
-}
-
-static inline void
-butter_filter (const gfloat * input, gfloat * output,
- const gfloat * a, const gfloat * b)
-{
- output[0] = input[0] * b[0]
- + input[-1] * b[1] - output[-1] * a[1]
- + input[-2] * b[2] - output[-2] * a[2];
-}
-
-/* Because butter_filter and yule_filter are inlined, this function is
- * a bit blown-up (code-size wise), but not inlining gives a ca. 40%
- * performance penalty. */
-
-static inline void
-apply_filters (const RgAnalysisCtx * ctx, const gfloat * input_l,
- const gfloat * input_r, guint n_samples)
-{
- const gfloat *ayule = AYule[ctx->sample_rate_index];
- const gfloat *byule = BYule[ctx->sample_rate_index];
- const gfloat *abutter = AButter[ctx->sample_rate_index];
- const gfloat *bbutter = BButter[ctx->sample_rate_index];
- gint pos = ctx->window_n_samples_done;
- gint i;
-
- for (i = 0; i < n_samples; i++, pos++) {
- yule_filter (input_l + i, ctx->step_l + pos, ayule, byule);
- butter_filter (ctx->step_l + pos, ctx->out_l + pos, abutter, bbutter);
-
- yule_filter (input_r + i, ctx->step_r + pos, ayule, byule);
- butter_filter (ctx->step_r + pos, ctx->out_r + pos, abutter, bbutter);
- }
-}
-
-/* Clear filter buffer state and current RMS window. */
-
-static void
-reset_filters (RgAnalysisCtx * ctx)
-{
- gint i;
-
- for (i = 0; i < MAX_ORDER; i++) {
-
- ctx->inprebuf_l[i] = 0.;
- ctx->stepbuf_l[i] = 0.;
- ctx->outbuf_l[i] = 0.;
-
- ctx->inprebuf_r[i] = 0.;
- ctx->stepbuf_r[i] = 0.;
- ctx->outbuf_r[i] = 0.;
- }
-
- ctx->window_square_sum = 0.;
- ctx->window_n_samples_done = 0;
-}
-
-/* Accumulator functions. */
-
-/* Add two accumulators in-place. The sum is defined as the result of
- * the vector sum of the histogram array and the maximum value of the
- * peak field. Thus "adding" the accumulators for all tracks yields
- * the correct result for obtaining the album gain and peak. */
-
-static void
-accumulator_add (RgAnalysisAcc * acc, const RgAnalysisAcc * acc_other)
-{
- gint i;
-
- for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++)
- acc->histogram[i] += acc_other->histogram[i];
-
- acc->peak = MAX (acc->peak, acc_other->peak);
-}
-
-/* Reset an accumulator to zero. */
-
-static void
-accumulator_clear (RgAnalysisAcc * acc)
-{
- memset (acc->histogram, 0, sizeof (acc->histogram));
- acc->peak = 0.;
-}
-
-/* Obtain final analysis result from an accumulator. Returns TRUE on
- * success, FALSE on error (if accumulator is still zero). */
-
-static gboolean
-accumulator_result (const RgAnalysisAcc * acc, gdouble * result_gain,
- gdouble * result_peak)
-{
- guint32 sum = 0;
- guint32 upper;
- guint i;
-
- for (i = 0; i < G_N_ELEMENTS (acc->histogram); i++)
- sum += acc->histogram[i];
-
- if (sum == 0)
- /* All entries are 0: We got less than 50ms of data. */
- return FALSE;
-
- upper = (guint32) ceil (sum * (1. - (gdouble) (RMS_PERCENTILE / 100.)));
-
- for (i = G_N_ELEMENTS (acc->histogram); i--;) {
- if (upper <= acc->histogram[i])
- break;
- upper -= acc->histogram[i];
- }
-
- if (result_peak != NULL)
- *result_peak = acc->peak;
- if (result_gain != NULL)
- *result_gain = PINK_REF - (gdouble) i / STEPS_PER_DB;
-
- return TRUE;
-}
-
-/* Functions that operate on contexts, for external usage. */
-
-/* Create a new context. Before it can be used, a sample rate must be
- * configured using rg_analysis_set_sample_rate. */
-
-RgAnalysisCtx *
-rg_analysis_new (void)
-{
- RgAnalysisCtx *ctx;
-
- ctx = g_new (RgAnalysisCtx, 1);
-
- ctx->inpre_l = ctx->inprebuf_l + MAX_ORDER;
- ctx->step_l = ctx->stepbuf_l + MAX_ORDER;
- ctx->out_l = ctx->outbuf_l + MAX_ORDER;
-
- ctx->inpre_r = ctx->inprebuf_r + MAX_ORDER;
- ctx->step_r = ctx->stepbuf_r + MAX_ORDER;
- ctx->out_r = ctx->outbuf_r + MAX_ORDER;
-
- ctx->sample_rate = 0;
-
- accumulator_clear (&ctx->track);
- accumulator_clear (&ctx->album);
-
- return ctx;
-}
-
-/* Adapt to given sample rate. Does nothing if already the current
- * rate (returns TRUE then). Returns FALSE only if given sample rate
- * is not supported. If the configured rate changes, the last
- * unprocessed incomplete 50ms chunk of data is dropped because the
- * filters are reset. */
-
-gboolean
-rg_analysis_set_sample_rate (RgAnalysisCtx * ctx, gint sample_rate)
-{
- g_return_val_if_fail (ctx != NULL, FALSE);
-
- if (ctx->sample_rate == sample_rate)
- return TRUE;
-
- switch (sample_rate) {
- case 48000:
- ctx->sample_rate_index = 0;
- break;
- case 44100:
- ctx->sample_rate_index = 1;
- break;
- case 32000:
- ctx->sample_rate_index = 2;
- break;
- case 24000:
- ctx->sample_rate_index = 3;
- break;
- case 22050:
- ctx->sample_rate_index = 4;
- break;
- case 16000:
- ctx->sample_rate_index = 5;
- break;
- case 12000:
- ctx->sample_rate_index = 6;
- break;
- case 11025:
- ctx->sample_rate_index = 7;
- break;
- case 8000:
- ctx->sample_rate_index = 8;
- break;
- default:
- return FALSE;
- }
-
- ctx->sample_rate = sample_rate;
- /* The + 999 has the effect of ceil()ing: */
- ctx->window_n_samples = (guint) ((sample_rate * RMS_WINDOW_MSECS + 999)
- / 1000);
-
- reset_filters (ctx);
-
- return TRUE;
-}
-
-void
-rg_analysis_destroy (RgAnalysisCtx * ctx)
-{
- g_free (ctx);
-}
-
-/* Entry points for analyzing sample data in common raw data formats.
- * The stereo format functions expect interleaved frames. It is
- * possible to pass data in different formats for the same context,
- * there are no restrictions. All functions have the same signature;
- * the depth argument for the float functions is not variable and must
- * be given the value 32. */
-
-void
-rg_analysis_analyze_mono_float (RgAnalysisCtx * ctx, gconstpointer data,
- gsize size, guint depth)
-{
- gfloat conv_samples[512];
- const gfloat *samples = (gfloat *) data;
- guint n_samples = size / sizeof (gfloat);
- gint i;
-
- g_return_if_fail (depth == 32);
- g_return_if_fail (size % sizeof (gfloat) == 0);
-
- while (n_samples) {
- gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples));
-
- n_samples -= n;
- memcpy (conv_samples, samples, n * sizeof (gfloat));
- for (i = 0; i < n; i++) {
- ctx->track.peak = MAX (ctx->track.peak, fabs (conv_samples[i]));
- conv_samples[i] *= 32768.;
- }
- samples += n;
- rg_analysis_analyze (ctx, conv_samples, NULL, n);
- }
-}
-
-void
-rg_analysis_analyze_stereo_float (RgAnalysisCtx * ctx, gconstpointer data,
- gsize size, guint depth)
-{
- gfloat conv_samples_l[256];
- gfloat conv_samples_r[256];
- const gfloat *samples = (gfloat *) data;
- guint n_frames = size / (sizeof (gfloat) * 2);
- gint i;
-
- g_return_if_fail (depth == 32);
- g_return_if_fail (size % (sizeof (gfloat) * 2) == 0);
-
- while (n_frames) {
- gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l));
-
- n_frames -= n;
- for (i = 0; i < n; i++) {
- gfloat old_sample;
-
- old_sample = samples[2 * i];
- ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample));
- conv_samples_l[i] = old_sample * 32768.;
-
- old_sample = samples[2 * i + 1];
- ctx->track.peak = MAX (ctx->track.peak, fabs (old_sample));
- conv_samples_r[i] = old_sample * 32768.;
- }
- samples += 2 * n;
- rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n);
- }
-}
-
-void
-rg_analysis_analyze_mono_int16 (RgAnalysisCtx * ctx, gconstpointer data,
- gsize size, guint depth)
-{
- gfloat conv_samples[512];
- gint32 peak_sample = 0;
- const gint16 *samples = (gint16 *) data;
- guint n_samples = size / sizeof (gint16);
- gint shift = sizeof (gint16) * 8 - depth;
- gint i;
-
- g_return_if_fail (depth <= (sizeof (gint16) * 8));
- g_return_if_fail (size % sizeof (gint16) == 0);
-
- while (n_samples) {
- gint n = MIN (n_samples, G_N_ELEMENTS (conv_samples));
-
- n_samples -= n;
- for (i = 0; i < n; i++) {
- gint16 old_sample = samples[i] << shift;
-
- peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
- conv_samples[i] = (gfloat) old_sample;
- }
- samples += n;
- rg_analysis_analyze (ctx, conv_samples, NULL, n);
- }
- ctx->track.peak = MAX (ctx->track.peak,
- (gdouble) peak_sample / ((gdouble) (1u << 15)));
-}
-
-void
-rg_analysis_analyze_stereo_int16 (RgAnalysisCtx * ctx, gconstpointer data,
- gsize size, guint depth)
-{
- gfloat conv_samples_l[256];
- gfloat conv_samples_r[256];
- gint32 peak_sample = 0;
- const gint16 *samples = (gint16 *) data;
- guint n_frames = size / (sizeof (gint16) * 2);
- gint shift = sizeof (gint16) * 8 - depth;
- gint i;
-
- g_return_if_fail (depth <= (sizeof (gint16) * 8));
- g_return_if_fail (size % (sizeof (gint16) * 2) == 0);
-
- while (n_frames) {
- gint n = MIN (n_frames, G_N_ELEMENTS (conv_samples_l));
-
- n_frames -= n;
- for (i = 0; i < n; i++) {
- gint16 old_sample;
-
- old_sample = samples[2 * i] << shift;
- peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
- conv_samples_l[i] = (gfloat) old_sample;
-
- old_sample = samples[2 * i + 1] << shift;
- peak_sample = MAX (peak_sample, ABS ((gint32) old_sample));
- conv_samples_r[i] = (gfloat) old_sample;
- }
- samples += 2 * n;
- rg_analysis_analyze (ctx, conv_samples_l, conv_samples_r, n);
- }
- ctx->track.peak = MAX (ctx->track.peak,
- (gdouble) peak_sample / ((gdouble) (1u << 15)));
-}
-
-/* Analyze the given chunk of samples. The sample data is given in
- * floating point format but should be scaled such that the values
- * +/-32768.0 correspond to the -0dBFS reference amplitude.
- *
- * samples_l: Buffer with sample data for the left channel or of the
- * mono channel.
- *
- * samples_r: Buffer with sample data for the right channel or NULL
- * for mono.
- *
- * n_samples: Number of samples passed in each buffer.
- */
-
-void
-rg_analysis_analyze (RgAnalysisCtx * ctx, const gfloat * samples_l,
- const gfloat * samples_r, guint n_samples)
-{
- const gfloat *input_l, *input_r;
- guint n_samples_done;
- gint i;
-
- g_return_if_fail (ctx != NULL);
- g_return_if_fail (samples_l != NULL);
- g_return_if_fail (ctx->sample_rate != 0);
-
- if (n_samples == 0)
- return;
-
- if (samples_r == NULL)
- /* Mono. */
- samples_r = samples_l;
-
- memcpy (ctx->inpre_l, samples_l,
- MIN (n_samples, MAX_ORDER) * sizeof (gfloat));
- memcpy (ctx->inpre_r, samples_r,
- MIN (n_samples, MAX_ORDER) * sizeof (gfloat));
-
- n_samples_done = 0;
- while (n_samples_done < n_samples) {
- /* Limit number of samples to be processed in this iteration to
- * the number needed to complete the next window: */
- guint n_samples_current = MIN (n_samples - n_samples_done,
- ctx->window_n_samples - ctx->window_n_samples_done);
-
- if (n_samples_done < MAX_ORDER) {
- input_l = ctx->inpre_l + n_samples_done;
- input_r = ctx->inpre_r + n_samples_done;
- n_samples_current = MIN (n_samples_current, MAX_ORDER - n_samples_done);
- } else {
- input_l = samples_l + n_samples_done;
- input_r = samples_r + n_samples_done;
- }
-
- apply_filters (ctx, input_l, input_r, n_samples_current);
-
- /* Update the square sum. */
- for (i = 0; i < n_samples_current; i++)
- ctx->window_square_sum += ctx->out_l[ctx->window_n_samples_done + i]
- * ctx->out_l[ctx->window_n_samples_done + i]
- + ctx->out_r[ctx->window_n_samples_done + i]
- * ctx->out_r[ctx->window_n_samples_done + i];
-
- ctx->window_n_samples_done += n_samples_current;
-
- g_return_if_fail (ctx->window_n_samples_done <= ctx->window_n_samples);
-
- if (ctx->window_n_samples_done == ctx->window_n_samples) {
- /* Get the Root Mean Square (RMS) for this set of samples. */
- gdouble val = STEPS_PER_DB * 10. * log10 (ctx->window_square_sum /
- ctx->window_n_samples * 0.5 + 1.e-37);
- gint ival = CLAMP ((gint) val, 0,
- (gint) G_N_ELEMENTS (ctx->track.histogram) - 1);
-
- ctx->track.histogram[ival]++;
- ctx->window_square_sum = 0.;
- ctx->window_n_samples_done = 0;
-
- /* No need for memmove here, the areas never overlap: Even for
- * the smallest sample rate, the number of samples needed for
- * the window is greater than MAX_ORDER. */
-
- memcpy (ctx->stepbuf_l, ctx->stepbuf_l + ctx->window_n_samples,
- MAX_ORDER * sizeof (gfloat));
- memcpy (ctx->outbuf_l, ctx->outbuf_l + ctx->window_n_samples,
- MAX_ORDER * sizeof (gfloat));
-
- memcpy (ctx->stepbuf_r, ctx->stepbuf_r + ctx->window_n_samples,
- MAX_ORDER * sizeof (gfloat));
- memcpy (ctx->outbuf_r, ctx->outbuf_r + ctx->window_n_samples,
- MAX_ORDER * sizeof (gfloat));
- }
-
- n_samples_done += n_samples_current;
- }
-
- if (n_samples >= MAX_ORDER) {
-
- memcpy (ctx->inprebuf_l, samples_l + n_samples - MAX_ORDER,
- MAX_ORDER * sizeof (gfloat));
-
- memcpy (ctx->inprebuf_r, samples_r + n_samples - MAX_ORDER,
- MAX_ORDER * sizeof (gfloat));
-
- } else {
-
- memmove (ctx->inprebuf_l, ctx->inprebuf_l + n_samples,
- (MAX_ORDER - n_samples) * sizeof (gfloat));
- memcpy (ctx->inprebuf_l + MAX_ORDER - n_samples, samples_l,
- n_samples * sizeof (gfloat));
-
- memmove (ctx->inprebuf_r, ctx->inprebuf_r + n_samples,
- (MAX_ORDER - n_samples) * sizeof (gfloat));
- memcpy (ctx->inprebuf_r + MAX_ORDER - n_samples, samples_r,
- n_samples * sizeof (gfloat));
-
- }
-}
-
-/* Obtain track gain and peak. Returns TRUE on success. Can fail if
- * not enough samples have been processed. Updates album accumulator.
- * Resets track accumulator. */
-
-gboolean
-rg_analysis_track_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak)
-{
- gboolean result;
-
- g_return_val_if_fail (ctx != NULL, FALSE);
-
- accumulator_add (&ctx->album, &ctx->track);
- result = accumulator_result (&ctx->track, gain, peak);
- accumulator_clear (&ctx->track);
-
- reset_filters (ctx);
-
- return result;
-}
-
-/* Obtain album gain and peak. Returns TRUE on success. Can fail if
- * not enough samples have been processed. Resets album
- * accumulator. */
-
-gboolean
-rg_analysis_album_result (RgAnalysisCtx * ctx, gdouble * gain, gdouble * peak)
-{
- gboolean result;
-
- g_return_val_if_fail (ctx != NULL, FALSE);
-
- result = accumulator_result (&ctx->album, gain, peak);
- accumulator_clear (&ctx->album);
-
- return result;
-}
-
-void
-rg_analysis_reset_album (RgAnalysisCtx * ctx)
-{
- accumulator_clear (&ctx->album);
-}
-
-/* Reset internal buffers as well as track and album accumulators.
- * Configured sample rate is kept intact. */
-
-void
-rg_analysis_reset (RgAnalysisCtx * ctx)
-{
- g_return_if_fail (ctx != NULL);
-
- reset_filters (ctx);
- accumulator_clear (&ctx->track);
- accumulator_clear (&ctx->album);
-}