aboutsummaryrefslogtreecommitdiffstats
path: root/doc/c/overview.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/c/overview.rst')
-rw-r--r--doc/c/overview.rst581
1 files changed, 10 insertions, 571 deletions
diff --git a/doc/c/overview.rst b/doc/c/overview.rst
index 3ebe21e..f597aab 100644
--- a/doc/c/overview.rst
+++ b/doc/c/overview.rst
@@ -1,579 +1,18 @@
.. default-domain:: c
.. highlight:: c
-The core API (excluding backend-specific components) is declared in ``pugl.h``:
+########
+Overview
+########
-.. code-block:: c
-
- #include <pugl/pugl.h>
-
-The API revolves around two main objects: the `world` and the `view`.
+The Pugl API revolves around two main objects: the `world` and the `view`.
An application creates a world to manage top-level state,
then creates one or more views to display.
-****************
-Creating a World
-****************
-
-The world is the top-level object which represents an instance of Pugl.
-It handles the connection to the window system,
-and manages views and the event loop.
-
-An application typically has a single world,
-which is constructed once on startup and used to drive the main event loop.
-
-Construction
-============
-
-A world must be created before any views, and it must outlive all of its views.
-A world is created with :func:`puglNewWorld`, for example:
-
-.. code-block:: c
-
- PuglWorld* world = puglNewWorld(PUGL_PROGRAM, 0);
-
-For a plugin, specify :enumerator:`PUGL_MODULE <PuglWorldType.PUGL_MODULE>` instead.
-In some cases, it is necessary to pass additional flags.
-For example, Vulkan requires thread support:
-
-.. code-block:: c
-
- PuglWorld* world = puglNewWorld(PUGL_MODULE, PUGL_WORLD_THREADS)
-
-It is a good idea to set a class name for your project with :func:`puglSetClassName`.
-This allows the window system to distinguish different applications and,
-for example, users to set up rules to manage their windows nicely:
-
-.. code-block:: c
-
- puglSetClassName(world, "MyAwesomeProject")
-
-Setting Application Data
-========================
-
-Pugl will call an event handler in the application with only a view pointer and an event,
-so there needs to be some way to access the data you use in your application.
-This is done by setting an opaque handle on the world with :func:`puglSetWorldHandle`,
-for example:
-
-.. code-block:: c
-
- puglSetWorldHandle(world, myApp);
-
-The handle can be later retrieved with :func:`puglGetWorldHandle`:
-
-.. code-block:: c
-
- MyApp* app = (MyApp*)puglGetWorldHandle(world);
-
-All non-constant data should be accessed via this handle,
-to avoid problems associated with static mutable data.
-
-***************
-Creating a View
-***************
-
-A view is a drawable region that receives events.
-You may think of it as a window,
-though it may be embedded and not represent a top-level system window. [#f1]_
-
-Creating a visible view is a multi-step process.
-When a new view is created with :func:`puglNewView`,
-it does not yet represent a "real" system view:
-
-.. code-block:: c
-
- PuglView* view = puglNewView(world);
-
-Configuring the Frame
-=====================
-
-Before display,
-the necessary :doc:`frame <api/frame>` and :doc:`window <api/window>` attributes should be set.
-These allow the window system (or plugin host) to arrange the view properly.
-For example:
-
-.. code-block:: c
-
- const double defaultWidth = 1920.0;
- const double defaultHeight = 1080.0;
-
- puglSetWindowTitle(view, "My Window");
- puglSetDefaultSize(view, defaultWidth, defaultHeight);
- puglSetMinSize(view, defaultWidth / 4.0, defaultHeight / 4.0);
- puglSetAspectRatio(view, 1, 1, 16, 9);
-
-There are also several :enum:`hints <PuglViewHint>` for basic attributes that can be set:
-
-.. code-block:: c
-
- puglSetViewHint(view, PUGL_RESIZABLE, PUGL_TRUE);
- puglSetViewHint(view, PUGL_IGNORE_KEY_REPEAT, PUGL_TRUE);
-
-Embedding
-=========
-
-To embed the view in another window,
-you will need to somehow get the :type:`native view handle <PuglNativeView>` for the parent,
-then set it with :func:`puglSetParentWindow`.
-If the parent is a Pugl view,
-the native handle can be accessed with :func:`puglGetNativeWindow`.
-For example:
-
-.. code-block:: c
-
- puglSetParentWindow(view, puglGetNativeWindow(parent));
-
-Setting an Event Handler
-========================
-
-In order to actually do anything, a view must process events from the system.
-Pugl dispatches all events to a single :type:`event handling function <PuglEventFunc>`,
-which is set with :func:`puglSetEventFunc`:
-
-.. code-block:: c
-
- puglSetEventFunc(view, onEvent);
-
-See `Handling Events`_ below for details on writing the event handler itself.
-
-Setting View Data
-=================
-
-Since the event handler is called with only a view pointer and an event,
-there needs to be some way to access application data associated with the view.
-Similar to `Setting Application Data`_ above,
-this is done by setting an opaque handle on the view with :func:`puglSetHandle`,
-for example:
-
-.. code-block:: c
-
- puglSetHandle(view, myViewData);
-
-The handle can be later retrieved,
-likely in the event handler,
-with :func:`puglGetHandle`:
-
-.. code-block:: c
-
- MyViewData* data = (MyViewData*)puglGetHandle(view);
-
-All non-constant data should be accessed via this handle,
-to avoid problems associated with static mutable data.
-
-If data is also associated with the world,
-it can be retrieved via the view using :func:`puglGetWorld`:
-
-.. code-block:: c
-
- PuglWorld* world = puglGetWorld(view);
- MyApp* app = (MyApp*)puglGetWorldHandle(world);
-
-Setting a Backend
-=================
-
-Before being realized, the view must have a backend set with :func:`puglSetBackend`.
-
-The backend manages the graphics API that will be used for drawing.
-Pugl includes backends and supporting API for
-:doc:`Cairo <api/cairo>`, :doc:`OpenGL <api/gl>`, and :doc:`Vulkan <api/vulkan>`.
-
-Using Cairo
------------
-
-Cairo-specific API is declared in the ``cairo.h`` header:
-
-.. code-block:: c
-
- #include <pugl/cairo.h>
-
-The Cairo backend is provided by :func:`puglCairoBackend()`:
-
-.. code-block:: c
-
- puglSetBackend(view, puglCairoBackend());
-
-No additional configuration is required for Cairo.
-To draw when handling an expose event,
-the `Cairo context <https://www.cairographics.org/manual/cairo-cairo-t.html>`_ can be accessed with :func:`puglGetContext`:
-
-.. code-block:: c
-
- cairo_t* cr = (cairo_t*)puglGetContext(view);
-
-Using OpenGL
-------------
-
-OpenGL-specific API is declared in the ``gl.h`` header:
-
-.. code-block:: c
-
- #include <pugl/gl.h>
-
-The OpenGL backend is provided by :func:`puglGlBackend()`:
-
-.. code-block:: c
-
- puglSetBackend(view, puglGlBackend());
-
-Some hints must also be set so that the context can be set up correctly.
-For example, to use OpenGL 3.3 Core Profile:
-
-.. code-block:: c
-
- puglSetViewHint(view, PUGL_USE_COMPAT_PROFILE, PUGL_FALSE);
- puglSetViewHint(view, PUGL_CONTEXT_VERSION_MAJOR, 3);
- puglSetViewHint(view, PUGL_CONTEXT_VERSION_MINOR, 3);
-
-If you need to perform some setup using the OpenGL API,
-there are two ways to do so.
-
-The OpenGL context is active when
-:enumerator:`PUGL_CREATE <PuglEventType.PUGL_CREATE>` and
-:enumerator:`PUGL_DESTROY <PuglEventType.PUGL_DESTROY>`
-events are dispatched,
-so things like creating and destroying shaders and textures can be done then.
-
-Alternatively, if it is cumbersome to set up and tear down OpenGL in the event handler,
-:func:`puglEnterContext` and :func:`puglLeaveContext` can be used to manually activate the OpenGL context during application setup.
-Note, however, that unlike many other APIs, these functions must not be used for drawing.
-It is only valid to use the OpenGL API for configuration in a manually entered context,
-rendering will not work.
-For example:
-
-.. code-block:: c
-
- puglEnterContext(view);
- setupOpenGL(myApp);
- puglLeaveContext(view);
-
- while (!myApp->quit) {
- puglUpdate(world, 0.0);
- }
-
- puglEnterContext(view);
- teardownOpenGL(myApp);
- puglLeaveContext(view);
-
-Using Vulkan
-------------
-
-Vulkan-specific API is declared in the ``vulkan.h`` header.
-This header includes Vulkan headers,
-so if you are dynamically loading Vulkan at runtime,
-you should define ``VK_NO_PROTOTYPES`` before including it.
-
-.. code-block:: c
-
- #define VK_NO_PROTOTYPES
-
- #include <pugl/vulkan.h>
-
-The Vulkan backend is provided by :func:`puglVulkanBackend()`:
-
-.. code-block:: c
-
- puglSetBackend(view, puglVulkanBackend());
-
-Unlike OpenGL, almost all Vulkan configuration is done using the Vulkan API directly.
-Pugl only provides a portable mechanism to load the Vulkan library and get the functions used to load the rest of the Vulkan API.
-
-Loading Vulkan
-^^^^^^^^^^^^^^
-
-For maximum compatibility,
-it is best to not link to Vulkan at compile-time,
-but instead load the Vulkan API at run-time.
-To do so, first create a :struct:`PuglVulkanLoader`:
-
-.. code-block:: c
-
- PuglVulkanLoader* loader = puglNewVulkanLoader(world);
-
-The loader manages the dynamically loaded Vulkan library,
-so it must be kept alive for as long as the application is using Vulkan.
-You can get the function used to load Vulkan functions with :func:`puglGetInstanceProcAddrFunc`:
-
-.. code-block:: c
-
- PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr =
- puglGetInstanceProcAddrFunc(loader);
-
-This vkGetInstanceProcAddr_ function can be used to load the rest of the Vulkan API.
-For example, you can use it to get the vkCreateInstance_ function,
-then use that to create your Vulkan instance.
-In practice, you will want to use some loader or wrapper API since there are many Vulkan functions.
-
-For advanced situations,
-there is also :func:`puglGetDeviceProcAddrFunc` which retrieves the vkGetDeviceProcAddr_ function instead.
-
-The Vulkan loader is provided for convenience,
-so that applications to not need to write platform-specific code to load Vulkan.
-Its use it not mandatory and Pugl can be used with Vulkan loaded by some other method.
-
-Linking with Vulkan
-^^^^^^^^^^^^^^^^^^^
-
-If you do want to link to the Vulkan library at compile time,
-note that the Pugl Vulkan backend does not depend on it,
-so you will have to do so explicitly.
-
-Creating a Surface
-^^^^^^^^^^^^^^^^^^
-
-The details of using Vulkan are far beyond the scope of this documentation,
-but Pugl provides a portable function, :func:`puglCreateSurface`,
-to get the Vulkan surface for a view.
-Assuming you have somehow created your ``VkInstance``,
-you can get the surface for a view using :func:`puglCreateSurface`:
-
-.. code-block:: c
-
- VkSurfaceKHR* surface = NULL;
- puglCreateSurface(puglGetDeviceProcAddrFunc(loader),
- view,
- vulkanInstance,
- NULL,
- &surface);
-
-Showing the View
-================
-
-Once the view is configured, it can be "realized" with :func:`puglRealize`.
-This creates a "real" system view, for example:
-
-.. code-block:: c
-
- PuglStatus status = puglRealize(view);
- if (status) {
- fprintf(stderr, "Error realizing view (%s)\n", puglStrerror(status));
- }
-
-Note that realizing a view can fail for many reasons,
-so the return code should always be checked.
-This is generally the case for any function that interacts with the window system.
-Most functions also return a :enum:`PuglStatus`,
-but these checks are omitted for brevity in the rest of this documentation.
-
-A realized view is not initially visible,
-but can be shown with :func:`puglShow`:
-
-.. code-block:: c
-
- puglShow(view);
-
-To create an initially visible view,
-it is also possible to simply call :func:`puglShow` right away.
-The view will be automatically realized if necessary.
-
-***************
-Handling Events
-***************
-
-Events are sent to a view when it has received user input,
-must be drawn, or in other situations that may need to be handled such as resizing.
-
-Events are sent to the event handler as a :union:`PuglEvent` union.
-The ``type`` field defines the type of the event and which field of the union is active.
-The application must handle at least :enumerator:`PUGL_CONFIGURE <PuglEventType.PUGL_CONFIGURE>`
-and :enumerator:`PUGL_EXPOSE <PuglEventType.PUGL_EXPOSE>` to draw anything,
-but there are many other :enum:`event types <PuglEventType>`.
-
-For example, a basic event handler might look something like this:
-
-.. code-block:: c
-
- static PuglStatus
- onEvent(PuglView* view, const PuglEvent* event)
- {
- MyApp* app = (MyApp*)puglGetHandle(view);
-
- switch (event->type) {
- case PUGL_CREATE:
- return setupGraphics(app);
- case PUGL_DESTROY:
- return teardownGraphics(app);
- case PUGL_CONFIGURE:
- return resize(app, event->configure.width, event->configure.height);
- case PUGL_EXPOSE:
- return draw(app, view);
- case PUGL_CLOSE:
- return quit(app);
- case PUGL_BUTTON_PRESS:
- return onButtonPress(app, view, event->button);
- default:
- break;
- }
-
- return PUGL_SUCCESS;
- }
-
-Using the Graphics Context
-==========================
-
-Drawing
--------
-
-Note that Pugl uses a different drawing model than many libraries,
-particularly those designed for game-style main loops like `SDL <https://libsdl.org/>`_ and `GLFW <https://www.glfw.org/>`_.
-
-In that style of code, drawing is performed imperatively in the main loop,
-but with Pugl, the application must draw only while handling an expose event.
-This is because Pugl supports event-driven applications that only draw the damaged region when necessary,
-and handles exposure internally to provide optimized and consistent behavior across platforms.
-
-Cairo Context
--------------
-
-A Cairo context is created for each :struct:`PuglEventExpose`,
-and only exists during the handling of that event.
-Null is returned by :func:`puglGetContext` at any other time.
-
-OpenGL Context
---------------
-
-The OpenGL context is only active during the handling of these events:
-
-- :struct:`PuglEventCreate`
-- :struct:`PuglEventDestroy`
-- :struct:`PuglEventConfigure`
-- :struct:`PuglEventExpose`
-
-As always, drawing is only possible during an expose.
-
-Vulkan Context
---------------
-
-With Vulkan, the graphics context is managed by the application rather than Pugl.
-However, drawing must still only be performed during an expose.
-
-**********************
-Driving the Event Loop
-**********************
-
-Pugl does not contain any threads or other event loop "magic".
-For flexibility, the event loop is driven explicitly by repeatedly calling :func:`puglUpdate`,
-which processes events from the window system and dispatches them to views when necessary.
-
-The exact use of :func:`puglUpdate` depends on the application.
-Plugins should call it with a ``timeout`` of 0 in a callback driven by the host.
-This avoids blocking the main loop,
-since other plugins and the host itself need to run as well.
-
-A program can use whatever timeout is appropriate:
-event-driven applications may wait forever by using a ``timeout`` of -1,
-while those that draw continuously may use a significant fraction of the frame period
-(with enough time left over to render).
-
-Redrawing
-=========
-
-Occasional redrawing can be requested by calling :func:`puglPostRedisplay` or :func:`puglPostRedisplayRect`.
-After these are called,
-a :struct:`PuglEventExpose` will be dispatched on the next call to :func:`puglUpdate`.
-
-For continuous redrawing,
-call :func:`puglPostRedisplay` while handling a :struct:`PuglEventUpdate` event.
-This event is sent just before views are redrawn,
-so it can be used as a hook to expand the update region right before the view is exposed.
-Anything else that needs to be done every frame can be handled similarly.
-
-Event Dispatching
-=================
-
-Ideally, pending events are dispatched during a call to :func:`puglUpdate`,
-directly within the scope of that call.
-
-Unfortunately, this is not universally true due to differences between platforms.
-
-MacOS
------
-
-On MacOS, drawing is handled specially and not by the normal event queue mechanism.
-This means that configure and expose events,
-and possibly others,
-may be dispatched to a view outside the scope of a :func:`puglUpdate` call.
-In general, you can not rely on coherent event dispatching semantics on MacOS:
-the operating system can call into application code at "random" times,
-and these calls may result in Pugl events being dispatched.
-
-An application that follows the Pugl guidelines should work fine,
-but there is one significant inconsistency you may encounter on MacOS:
-posting a redisplay will not wake up a blocked :func:`puglUpdate` call.
-
-Windows
--------
-
-On Windows, the application has relatively tight control over the event loop,
-so events are typically dispatched explicitly by :func:`puglUpdate`.
-Drawing is handled by events,
-so posting a redisplay will wake up a blocked :func:`puglUpdate` call.
-
-However, it is possible for the system to dispatch events at other times.
-So,
-it is possible for events to be dispatched outside the scope of a :func:`puglUpdate` call,
-but this does not happen in normal circumstances and can largely be ignored.
-
-X11
----
-
-On X11, the application strictly controls event dispatching,
-and there is no way for the system to call into application code at surprising times.
-So, all events are dispatched in the scope of a :func:`puglUpdate` call.
-
-Recursive Event Loops
----------------------
-
-On Windows and MacOS,
-the event loop is stalled while the user is resizing the window or,
-on Windows,
-has displayed the window menu.
-This means that :func:`puglUpdate` will block until the resize is finished,
-or the menu is closed.
-
-Pugl dispatches :struct:`PuglEventLoopEnter` and :struct:`PuglEventLoopLeave` events to notify the application of this situation.
-If you want to continuously redraw during resizing on these platforms,
-you can schedule a timer with :func:`puglStartTimer` when the recursive loop is entered,
-and post redisplays when handling the :struct:`PuglEventTimer`.
-Be sure to remove the timer with :func:`puglStopTimer` when the recursive loop is finished.
-
-On X11, there are no recursive event loops,
-and everything works as usual while the user is resizing the window.
-There is nothing special about a "live resize" on X11,
-and the above loop events will never be dispatched.
-
-*************
-Shutting Down
-*************
-
-When a view is closed,
-it will receive a :struct:`PuglEventClose`.
-An application may also set a flag based on user input or other conditions,
-which can be used to break out of the main loop and stop calling :func:`puglUpdate`.
-
-When the main event loop has finished running,
-any views and the world need to be destroyed, in that order.
-For example:
-
-.. code-block:: c
-
- puglFreeView(view);
- puglFreeWorld(world);
-
-.. _pkg-config: https://www.freedesktop.org/wiki/Software/pkg-config/
-
-.. _vkCreateInstance: https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/vkCreateInstance.html
-
-.. _vkGetDeviceProcAddr: https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/vkGetDeviceProcAddr.html
-
-.. _vkGetInstanceProcAddr: https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/vkGetInstanceProcAddr.html
-
-.. rubric:: Footnotes
+.. toctree::
-.. [#f1] MacOS has a strong distinction between
- `views <https://developer.apple.com/documentation/appkit/nsview>`_,
- which may be nested, and
- `windows <https://developer.apple.com/documentation/appkit/nswindow>`_,
- which may not.
- On Windows and X11, everything is a nestable window,
- but top-level windows are configured differently.
+ world
+ view
+ events
+ event-loop
+ shutting-down